Yanzhong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3670804/publications.pdf

Version: 2024-02-01

93 papers 18,304 citations

³⁸⁷⁴² 50 h-index

95 g-index

100 all docs

100 docs citations

100 times ranked 18972 citing authors

#	Article	IF	CITATIONS
1	Engineering a Mechanoactive Fibrous Substrate with Enhanced Efficiency in Regulating Stem Cell Tenodifferentiation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23219-23231.	8.0	4
2	Shape Memory and Osteogenesis Capabilities of the Electrospun Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Modified Poly(l-Lactide) Fibrous Mats. Tissue Engineering - Part A, 2021, 27, 142-152.	3.1	19
3	Understanding the cellular responses based on low-density electrospun fiber networks. Materials Science and Engineering C, 2021, 119, 111470.	7.3	17
4	Collagen and chondroitin sulfate functionalized bioinspired fibers for tendon tissue engineering application. International Journal of Biological Macromolecules, 2021, 170, 248-260.	7.5	31
5	Engineering a Highly Biomimetic Chitosan-Based Cartilage Scaffold by Using Short Fibers and a Cartilage-Decellularized Matrix. Biomacromolecules, 2021, 22, 2284-2297.	5.4	30
6	Lysine-doped polydopamine coating enhances antithrombogenicity and endothelialization of an electrospun aligned fibrous vascular graft. Applied Materials Today, 2021, 25, 101198.	4.3	16
7	Asiaticoside loading into polylacticâ€coâ€glycolic acid electrospun nanofibers attenuates host inflammatory response and promotes M2 macrophage polarization. Journal of Biomedical Materials Research - Part A, 2020, 108, 69-80.	4.0	19
8	Tendon ECM modified bioactive electrospun fibers promote MSC tenogenic differentiation and tendon regeneration. Applied Materials Today, 2020, 18, 100495.	4.3	26
9	Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells. Acta Biomaterialia, 2020, 108, 237-249.	8.3	37
10	Electrospun acid-neutralizing fibers for the amelioration of inflammatory response. Acta Biomaterialia, 2019, 97, 200-215.	8.3	53
11	Stiffness of Aligned Fibers Regulates the Phenotypic Expression of Vascular Smooth Muscle Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6867-6880.	8.0	72
12	<p>Rapid mineralization of hierarchical poly(l-lactic acid)/poly(Îμ-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration</p> . International Journal of Nanomedicine, 2019, Volume 14, 3929-3941.	6.7	21
13	Effects of GO and rGO incorporated nanofibrous scaffolds on the proliferation of Schwann cells. Biomedical Physics and Engineering Express, 2019, 5, 025002.	1.2	5
14	An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomaterialia, 2018, 66, 141-156.	8.3	78
15	One-Pot Synthesis of Silver Nanoparticle Incorporated Mesoporous Silica Granules for Hemorrhage Control and Antibacterial Treatment. ACS Biomaterials Science and Engineering, 2018, 4, 3588-3599.	5. 2	29
16	Fabrication of high performance silk fibroin fibers <i>via</i> stable jet electrospinning for potential use in anisotropic tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 3934-3945.	5.8	52
17	Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon, 2017, 116, 325-337.	10.3	191
18	Marriage of Albumin–Gadolinium Complexes and MoS ₂ Nanoflakes as Cancer Theranostics for Dual-Modality Magnetic Resonance/Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Diterfaces, 2017, 9, 17786-17798.	8.0	81

#	Article	IF	CITATIONS
19	One-Pot Synthesis of MoS ₂ Nanoflakes with Desirable Degradability for Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17347-17358.	8.0	104
20	Alkaliâ€Mediated Miscibility of Gelatin/Polycaprolactone for Electrospinning Homogeneous Composite Nanofibers for Tissue Scaffolding. Macromolecular Bioscience, 2017, 17, 1700268.	4.1	33
21	Small molecule purmorphamine enhanced the osteoinductive capacity of electrospun HAp/SF fibers. Journal of Controlled Release, 2017, 259, e12.	9.9	0
22	Polymeric Nanoparticles Induce NLRP3 Inflammasome Activation and Promote Breast Cancer Metastasis. Macromolecular Bioscience, 2017, 17, 1700273.	4.1	32
23	A newly identified mechanism involved in regulation of human mesenchymal stem cells by fibrous substrate stiffness. Acta Biomaterialia, 2016, 42, 247-257.	8.3	46
24	Optical and mechanical anisotropies of aligned electrospun nanofibers reinforced transparent PMMA nanocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 90, 380-389.	7.6	37
25	Fabrication of the composite nanofibers of NiO/ \hat{I}^3 -Al2O3 for potential application in photocatalysis. Ceramics International, 2016, 42, 17405-17409.	4.8	29
26	Highly aligned core–shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration. Nanoscale, 2016, 8, 16307-16322.	5.6	62
27	HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing. Journal of Materials Chemistry B, 2016, 4, 5308-5320.	5.8	52
28	Multifunctional Redox-Responsive Mesoporous Silica Nanoparticles for Efficient Targeting Drug Delivery and Magnetic Resonance Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33829-33841.	8.0	102
29	<scp>POSS</scp> â€based fluorinated azobenzeneâ€containing polymers: Photoâ€responsive behavior and evaluation of water repellency. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
30	Facile synthesis of novel albumin-functionalized flower-like MoS ₂ nanoparticles for in vitro chemo-photothermal synergistic therapy. RSC Advances, 2016, 6, 13040-13049.	3.6	56
31	Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta Biomaterialia, 2016, 29, 365-379.	8.3	126
32	Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Scientific Reports, 2015, 5, 17422.	3.3	219
33	Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility. Carbohydrate Polymers, 2015, 130, 166-174.	10.2	80
34	Engineering aligned electrospun PLLA microfibers with nano-porous surface nanotopography for modulating the responses of vascular smooth muscle cells. Journal of Materials Chemistry B, 2015, 3, 4439-4450.	5.8	99
35	Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth. Biofabrication, 2015, 7, 045004.	7.1	43
36	Au/Polypyrrole@Fe ₃ O ₄ Nanocomposites for MR/CT Dual-Modal Imaging Guided-Photothermal Therapy: An <i>in Vitro</i> Study. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4354-4367.	8.0	128

#	Article	IF	CITATIONS
37	Synthesis and characterization of nanofibrous hollow microspheres with tunable size and morphology via thermally induced phase separation technique. RSC Advances, 2015, 5, 61580-61585.	3.6	11
38	Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials, 2015, 53, 716-730.	11.4	154
39	Electrospun nanofibers of hydroxyapatite/collagen/chitosan promote osteogenic differentiation of the induced pluripotent stem cell-derived mesenchymal stem cells. Journal of Controlled Release, 2015, 213, e53.	9.9	6
40	Development of a novel elastic and macroporous chitosan hydrogel for wound healing application. Journal of Controlled Release, 2015, 213, e43-e44.	9.9	9
41	Growth factors have a protective effect on neomycinâ€induced hair cell loss. Cell Biology International, 2015, 39, 65-73.	3.0	11
42	Preclinical Evaluation of Tegadermâ,, Supported Nanofibrous Wound Matrix Dressing on Porcine Wound Healing Model. Advances in Wound Care, 2015, 4, 110-118.	5.1	17
43	Effect of inhomogeneity of the electrospun fibrous scaffolds of gelatin/polycaprolactone hybrid on cell proliferation. Journal of Biomedical Materials Research - Part A, 2015, 103, 431-438.	4.0	53
44	Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers. Biomedical Materials (Bristol), 2014, 9, 055001.	3. 3	52
45	Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomaterialia, 2014, 10, 2727-2738.	8.3	77
46	Electrospun Biomimetic Fibrous Scaffold from Shape Memory Polymer of PDLLA- <i>co</i> TMC for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2611-2621.	8.0	212
47	Comparison of sphere-forming capabilities of the cochlear stem cells derived from apical, middle and basal turns of murine organ of Corti. Neuroscience Letters, 2014, 579, 1-6.	2.1	4
48	Comparing the cultivated cochlear cells derived from neonatal and adult mouse. Journal of Translational Medicine, 2014, 12, 150.	4.4	7
49	Aligned Ultrafine Chitosan Fibers from Stable Jet Electrospinning. Acta Polymerica Sinica, 2014, 014, 131-140.	0.0	3
50	Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials, 2013, 34, 2624-2631.	11.4	144
51	Implication of stable jet length in electrospinning for collecting well-aligned ultrafine PLLA fibers. Polymer, 2013, 54, 6867-6876.	3.8	51
52	Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. Journal of Materials Chemistry B, 2013, 1, 5886.	5 . 8	122
53	Transparent PMMA-based nanocomposite using electrospun graphene-incorporated PA-6 nanofibers as the reinforcement. Composites Science and Technology, 2013, 89, 134-141.	7.8	50
54	The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials, 2013, 34, 4404-4417.	11.4	290

#	Article	IF	CITATIONS
55	Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates. Nanoscale, 2013, 5, 4993.	5.6	74
56	Ultrasound-Modulated Shape Memory and Payload Release Effects in a Biodegradable Cylindrical Rod Made of Chitosan-Functionalized PLGA Microspheres. Biomacromolecules, 2013, 14, 1971-1979.	5. 4	62
57	Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. Journal of Materials Chemistry, 2012, 22, 2111-2119.	6.7	44
58	Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology, 2012, 23, 485102.	2.6	86
59	Stable jet electrospinning for easy fabrication of aligned ultrafine fibers. Journal of Materials Chemistry, 2012, 22, 19634.	6.7	51
60	Fabrication of Large Pores in Electrospun Nanofibrous Scaffolds for Cellular Infiltration: A Review. Tissue Engineering - Part B: Reviews, 2012, 18, 77-87.	4.8	190
61	Acetic-Acid-Mediated Miscibility toward Electrospinning Homogeneous Composite Nanofibers of GT/PCL. Biomacromolecules, 2012, 13, 3917-3925.	5.4	107
62	Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloids and Surfaces B: Biointerfaces, 2011, 84, 528-535.	5.0	138
63	Enhanced Biomineralization in Osteoblasts on a Novel Electrospun Biocomposite Nanofibrous Substrate of Hydroxyapatite/Collagen/Chitosan. Tissue Engineering - Part A, 2010, 16, 1949-1960.	3.1	112
64	Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 510-525.	6.1	512
65	Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2065-2081.	3.4	136
66	Effect of Molecular Orientation on Mechanical Property of Single Electrospun Fiber of $Poly[(\langle i\rangle R\langle i\rangle)-3-hydroxybutyrate-\langle i\rangle co\langle i\rangle-(\langle i\rangle R\langle i\rangle)-3-hydroxyvalerate]$. Journal of Physical Chemistry B, 2009, 113, 13179-13185.	2.6	46
67	Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses. Journal of Materials Science: Materials in Medicine, 2008, 19, 2743-2749.	3.6	52
68	The development of biocomposite nanofibers for tissue scaffolding applications. Jom, 2008, 60, 45-48.	1.9	5
69	Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008, 29, 4314-4322.	11.4	637
70	Chitosan Nanofibers from an Easily Electrospinnable UHMWPEO-Doped Chitosan Solution System. Biomacromolecules, 2008, 9, 136-141.	5.4	122
71	Electrospinning Nanocomposite Nanofibers of Hydroxyapatite/Chitosan. Advanced Materials Research, 2008, 47-50, 1363-1366.	0.3	0
72	Nanotechnology for Nanomedicine and Delivery of Drugs. Current Pharmaceutical Design, 2008, 14, 2184-2200.	1.9	92

#	Article	IF	CITATIONS
73	Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitutiona †. Acta Biomaterialia, 2007, 3, 321-330.	8.3	784
74	Fabrication of porous electrospun nanofibres. Nanotechnology, 2006, 17, 901-908.	2.6	177
75	Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum) Tj ETQq1 1 0.784314 rgBT /O-2006, 7, 1049-1057.	verlock 10 5.4	Tf 50 667 To 459
76	In Vitro Culture of Human Dermal Fibroblasts on Electrospun Polycaprolactone Collagen Nanofibrous Membrane. Artificial Organs, 2006, 30, 440-446.	1.9	197
77	Crosslinking of the electrospun gelatin nanofibers. Polymer, 2006, 47, 2911-2917.	3.8	571
78	Fabrication of magnetic composite nanofibers of poly($\hat{l}\mu$ -caprolactone) with FePt nanoparticles by coaxial electrospinning. Journal of Magnetism and Magnetic Materials, 2006, 303, e286-e289.	2.3	37
79	Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. Journal of Biomedical Materials Research - Part A, 2006, 77A, 169-179.	4.0	314
80	Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning. Chemical Physics Letters, 2005, 415, 317-322.	2.6	102
81	Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. Biomacromolecules, 2005, 6, 2583-2589.	5.4	455
82	Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B, 2005, 72B, 156-165.	3.1	924
83	Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of Materials Science: Materials in Medicine, 2005, 16, 933-946.	3.6	561
84	Double-layered composite nanofibers and their mechanical performance. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2852-2861.	2.1	56
85	Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology, 2005, 16, 2138-2142.	2.6	135
86	Drug Delivery to the Brain – Realization by Novel Drug Carriers. Journal of Nanoscience and Nanotechnology, 2004, 4, 471-483.	0.9	91
87	Preparation of Coreâ^'Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning. Chemistry of Materials, 2004, 16, 3406-3409.	6.7	359
88	Electrospinning and mechanical characterization of gelatin nanofibers. Polymer, 2004, 45, 5361-5368.	3.8	629
89	A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63, 2223-2253.	7.8	6,630
90	Modeling of the progressive failure behavior of multilayer knitted fabric-reinforced composite laminates. Composites Science and Technology, 2001, 61, 2033-2046.	7.8	19

#	Article	IF	CITATIONS
91	Tensile Behaviour of Multilayer Knitted Fabric Composites with Different Stacking Configuration. Applied Composite Materials, 2001, 8, 279-295.	2.5	7
92	Prediction of Tensile Strength of Multilayer Knitted-Fabric-Reinforced Laminated Composites. Journal of Thermoplastic Composite Materials, 2001, 14, 70-83.	4.2	3
93	Fracture Characteristics of Knitted Fabric Composites under Tensile Load. Advanced Composites Letters, 2000, 9, 096369350000900.	1.3	2