Hai-Zheng Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3670614/publications.pdf

Version: 2024-02-01

162	13,293	53 h-index	112
papers	citations		g-index
165	165	165	11831 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The Evolution of Photoluminescence Properties of PEA ₂ Snl ₄ Upon Oxygen Exposure: Insight into Concentration Effects. Advanced Functional Materials, 2022, 32, 2108296.	14.9	14
2	Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nature Materials, 2022, 21, 210-216.	27.5	146
3	Celebrating the 10th Anniversary of the Youth Innovation Promotion Association, Chinese Academy of Sciences: Emerging Young Scientists in Physical Chemistry. Journal of Physical Chemistry Letters, 2022, 13, 650-652.	4.6	0
4	Role of Aspect Ratio in the Photoluminescence of Single CdSe/CdS Dot-in-Rods. Journal of Physical Chemistry C, 2022, 126, 2699-2707.	3.1	8
5	Low-Threshold Blue Quasi-2D Perovskite Laser through Domain Distribution Control. Nano Letters, 2022, 22, 1338-1344.	9.1	44
6	Fastâ€Response Oxygen Optical Fiber Sensor based on PEA ₂ SnI ₄ Perovskite with Extremely Low Limit of Detection. Advanced Science, 2022, 9, e2104708.	11.2	20
7	Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 $\hat{1}\frac{1}{4}$ m. Nanoscale, 2022, 14, 5994-5998.	5.6	14
8	What Happens When Halide Perovskites Meet with Water?. Journal of Physical Chemistry Letters, 2022, 13, 2281-2290.	4.6	70
9	In Situ Solution-Grown Halide Perovskite Single Crystals with Epitaxial Heterojunction Structures for Efficient Photodetection. Crystal Growth and Design, 2022, 22, 3662-3668.	3.0	7
10	Revealing the vertical structure of in-situ fabricated perovskite nanocrystals films toward efficient pure red light-emitting diodes. Fundamental Research, 2022, , .	3.3	4
11	Perovskite quantum dot microarrays: In situ fabrication via direct print photopolymerization. Nano Research, 2022, 15, 7681-7687.	10.4	18
12	Bandgap and dimension regulation of CsPbl ₃ perovskite through a bromine-terminated ligand for efficient pure red electroluminescence. Journal of Materials Chemistry C, 2022, 10, 9707-9713.	5 . 5	3
13	Centimeter-Sized Na-Doped CsPb ₂ Br ₅ Single Crystals with Efficient Self-Trapped Exciton Emission. Crystal Growth and Design, 2022, 22, 4025-4030.	3.0	6
14	Photon management of combining nanostructural antireflection and perovskite down-shifting composite films for improving the efficiency of silicon solar cells. Solar Energy Materials and Solar Cells, 2021, 220, 110856.	6.2	25
15	Developing a Fluorescent Hybrid Nanobiosensor Based on Quantum Dots and Azoreductase Enzyme forMethyl Red Monitoring. Iranian Biomedical Journal, 2021, 25, 8-20.	0.7	20
16	In Situ Patterning Perovskite Quantum Dots by Direct Laser Writing Fabrication. ACS Photonics, 2021, 8, 765-770.	6.6	58
17	Oneâ€Step Polymeric Melt Encapsulation Method to Prepare CsPbBr ₃ Perovskite Quantum Dots/Polymethyl Methacrylate Composite with High Performance. Advanced Functional Materials, 2021, 31, 2010009.	14.9	85
18	Nondestructive and Controllable Anion Exchange of Halide Perovskite Films through Finkelstein Reaction. Journal of Physical Chemistry C, 2021, 125, 9253-9260.	3.1	4

#	Article	IF	CITATIONS
19	62â€9: Invited Paper: Hybrid Composite Films with Perovskite Quantum Dots and Red Phosphors for LCD Display Backlights. Digest of Technical Papers SID International Symposium, 2021, 52, 912-913.	0.3	O
20	A Nearâ€Infrared Miniature Quantum Dot Spectrometer. Advanced Optical Materials, 2021, 9, 2100376.	7.3	20
21	lon exchange for halide perovskite: From nanocrystal to bulk materials. Nano Select, 2021, 2, 2040-2060.	3.7	21
22	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
23	Interlayer Determined Photoluminescence Excitation Properties of Cs-Rich and Pb-Rich Cs ₄ PbBr ₆ Samples. Journal of Physical Chemistry C, 2021, 125, 16103-16109.	3.1	15
24	Pâ€4.8: Inâ€situ Patterning Perovskite Quantum Dots by Direct Laser Writing Fabrication. Digest of Technical Papers SID International Symposium, 2021, 52, 771-771.	0.3	0
25	Highly Stable and Spectrally Tunable Gamma Phase Rb <i>></i> >Cs _{1â€"} <i>_{<}</i> >Cs _{Dots in PMMA Matrix through A Sites Engineering. Advanced Functional Materials, 2021, 31, 2008211.}	14.9	73
26	Photoluminescence Blinking and Biexciton Auger Recombination in Single Colloidal Quantum Dots with Sharp and Smooth Core/Shell Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 405-412.	4.6	18
27	Solution-processed inorganic perovskite crystals as achromatic quarter-wave plates. Nature Photonics, 2021, 15, 813-816.	31.4	64
28	Improving the efficiency of silicon solar cells using <i>in situ</i> fabricated perovskite quantum dots as luminescence downshifting materials. Nanophotonics, 2020, 9, 93-100.	6.0	37
29	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	16.0	81
30	Inch-sized aligned polymer nanofiber films with embedded CH ₃ NH ₃ PbBr ₃ nanocrystals: electrospinning fabrication using a folded aluminum foil as the collector. Nanotechnology, 2020, 31, 075708.	2.6	11
31	Hot Polarons with Trapped Excitons and Octahedra‶wist Phonons in CH 3 NH 3 PbBr 3 Hybrid Perovskite Nanowires. Laser and Photonics Reviews, 2020, 14, 1900267.	8.7	9
32	Colloidal Cd _{<i>x</i>} M _{1â€"<i>x</i>} Te Nanowires from the Visible to the Near Infrared Region: <i>N</i>	4.6	9
33	16â€4: <i>Lateâ€News Paper:</i> High Color Gamut Miniâ€LED Backlight Demon based on Dualâ€Emissive Perovskite Quantum Dots Films. Digest of Technical Papers SID International Symposium, 2020, 51, 219-221.	0.3	4
34	Colloidal Synthesis of Giant Shell PbSe-Based Core/Shell Quantum Dots in Polar Solvent: Cation Exchange versus Epitaxial Growth. Chemistry of Materials, 2020, 32, 6650-6656.	6.7	7
35	Blinking Mechanisms and Intrinsic Quantum onfined Stark Effect in Single Methylammonium Lead Bromide Perovskite Quantum Dots. Small, 2020, 16, e2005435.	10.0	19
36	Biexciton Dynamics in Single Colloidal CdSe Quantum Dots. Journal of Physical Chemistry Letters, 2020, 11, 10425-10432.	4.6	21

#	Article	IF	Citations
37	Perovskite Quantum Dots Based Optical Fabry–Pérot Pressure Sensor. ACS Photonics, 2020, 7, 2390-2394.	6.6	23
38	Progress in semiconductor quantum dots-based continuous-wave laser. Science China Materials, 2020, 63, 1382-1397.	6.3	10
39	Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting. Journal of Materials Chemistry C, 2020, 8, 10676-10695.	5.5	46
40	Balanced Carrier Injection and Charge Separation of CulnS ₂ Quantum Dots for Bifunctional Light-Emitting and Photodetection Devices. Journal of Physical Chemistry C, 2020, 124, 6554-6561.	3.1	12
41	Quantum dots on demand. Nature Photonics, 2020, 14, 65-66.	31.4	16
42	Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light: Science and Applications, 2020, 9, 73.	16.6	83
43	Tunable Mie Resonances of Tin-based Iodide Perovskite Islandlike Films with Enhanced Infrared Photoluminescence. Journal of Physical Chemistry Letters, 2020, 11, 3332-3338.	4.6	8
44	Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nature Communications, 2020, 11, 6428.	12.8	147
45	Enhanced emission of in-situ fabricated perovskite-polymer composite films on gold nanoparticle substrates. Optical Materials Express, 2020, 10, 1659.	3.0	7
46	An Integrative Informatics Approach to Explain the Mechanism of Action of Novel N1-(Anthraquinon-2-yl) Amidrazones as BCR/ABL Inhibitors. Current Computer-Aided Drug Design, 2020, 16, .	1.2	2
47	Enhanced emission of in-situ fabricated perovskite-polymer composite films on gold nanoparticle substrates. Optical Materials Express, 2020, 10, 1659.	3.0	2
48	Direct Observation of Surface Polarons in Capped CulnS2 Quantum Dots by Ultrafast Pump–Probe Spectroscopies. Journal of Physical Chemistry Letters, 2019, 10, 5297-5301.	4.6	15
49	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	2.5	2
50	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	2.6	1
51	Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Communications Physics, 2019, 2, .	5.3	36
52	Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods. Frontiers of Physics, 2019, 14, 1.	5.0	13
53	In Situ Inkjet Printing Strategy for Fabricating Perovskite Quantum Dot Patterns. Advanced Functional Materials, 2019, 29, 1903648.	14.9	154
54	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	3.1	1

#	Article	IF	CITATIONS
55	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	4.6	2
56	Highly Efficient Light Emitting Diodes Based on In Situ Fabricated FAPbI 3 Nanocrystals: Solvent Effects of Onâ€Chip Crystallization. Advanced Optical Materials, 2019, 7, 1900774.	7.3	34
57	37.5: Hybrid Backlight System based on Blue, Red LEDs and Perovskite Quantum Dots for Liquid Crystal Display Application. Digest of Technical Papers SID International Symposium, 2019, 50, 411-413.	0.3	3
58	51.2: <i>Invited Paper:</i> Efficient Lightâ€emitting Diodes Based on Inâ€situ Fabricated Perovskite Nanocrystals. Digest of Technical Papers SID International Symposium, 2019, 50, 567-567.	0.3	0
59	Pâ€4.2: Reducing Chromaticity Shifts of Light Emitting Diodes using Gradient Alloyed Cd <i>>_x</i> Zn _{@ZnS Core Shell Quantum Dots. Digest of Technical Papers SID International Symposium, 2019, 50, 702-702.}	0.3	O
60	Halogenatedâ€Methylammonium Based 3D Halide Perovskites. Advanced Materials, 2019, 31, e1903830.	21.0	40
61	Size-Dependent Phase Transition in Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 5451-5457.	4.6	48
62	Linearly polarized photoluminescence from anisotropic perovskite nanostructures: emerging materials for display technology. Journal of Information Display, 2019, 20, 181-192.	4.0	14
63	Illustrating the Shell Thickness Dependence in Alloyed Core/Shell Quantum-Dot-Based Light-Emitting Diodes by Impedance Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 26011-26017.	3.1	8
64	Stretchable Organometalâ€Halideâ€Perovskite Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1807516.	21.0	79
65	Quantum Dot LEDs: Stretchable Organometalâ€Halideâ€Perovskite Quantumâ€Dot Lightâ€Emitting Diodes (Adv.) Ti ETQq1 21.6] 0.78431
66	Polarizationâ€Sensitive Ultraviolet Detection from Orientedâ€CdSe@CdSâ€Dotâ€inâ€Rodsâ€integrated Silicon Photodetector. Advanced Optical Materials, 2019, 7, 1900330.	7.3	23
67	Gaining Insight into the Underlayer Treatment for in Situ Fabrication of Efficient Perovskite Nanocrystal-Based Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 17353-17359.	3.1	8
68	75â€1: Invited Paper: Hybrid Backlight System based on Blue, Red LEDs and Perovskite Quantum Dots for Liquid Crystal Display Application. Digest of Technical Papers SID International Symposium, 2019, 50, 1064-1066.	0.3	2
69	Impedance Spectroscopy: A Versatile Technique to Understand Solutionâ€Processed Optoelectronic Devices (Phys. Status Solidi RRL 5/2019). Physica Status Solidi - Rapid Research Letters, 2019, 13, 1970024.	2.4	1
70	Ultralow-Threshold and Color-Tunable Continuous-Wave Lasing at Room-Temperature from In Situ Fabricated Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 3248-3253.	4.6	83
71	Multiâ€Dimensional Quantum Nanostructures with Polarization Properties for Display Applications. Israel Journal of Chemistry, 2019, 59, 639-648.	2.3	13
72	In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Research, 2019, 12, 1411-1416.	10.4	54

#	Article	IF	CITATIONS
73	Rapid Growth of Halide Perovskite Single Crystals: From Methods to Optimization Control. Chinese Journal of Chemistry, 2019, 37, 616-629.	4.9	24
74	Growth of CdS nanotubes and their strong optical microcavity effects. Nanoscale, 2019, 11, 5325-5329.	5.6	15
75	Photodegradation of Organometal Hybrid Perovskite Nanocrystals: Clarifying the Role of Oxygen by Single-Dot Photoluminescence. Journal of Physical Chemistry Letters, 2019, 10, 864-869.	4.6	45
76	Reducing the Chromaticity Shifts of Lightâ€Emitting Diodes Using Gradientâ€Alloyed Cd <i>_x</i> Se <i>_y</i> Scsub>1â^² <i>< Core Shell Quantum Dots with Enhanced Highâ€Temperature Photoluminescence. Advanced Optical Materials, 2019, 7, 1801687.</i>	sub>y7.3	b> ⟨Ji>@ZnS
77	Highly luminescent red emissive perovskite quantum dots-embedded composite films: ligands capping and caesium doping-controlled crystallization process. Nanoscale, 2019, 11, 4942-4947. Cation effect on excitons in perovskite nanocrystals from single-dot photoluminescence of	5.6	20
78	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="normal">C</mml:mi> <mml:msub> <mml:mi mathvariant="normal">H</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mi mathvariant="normal">N</mml:mi> <mml:msub> <mml:mi< pre=""></mml:mi<></mml:msub></mml:mrow></mml:math></pre>	3.2	6
79	mathvariant="normal">H <mml:mn>3</mml:mn> <mml:mi>Pb</mml:mi> <mml:msub><≀ Efficient CulnS₂/ZnS Quantum Dots Lightâ€Emitting Diodes in Deep Red Region Using PEIE Modified ZnO Electron Transport Layer. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800575.</mml:msub>	nml:mi 2.4	24
80	Impedance Spectroscopy: A Versatile Technique to Understand Solutionâ€Processed Optoelectronic Devices. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800580.	2.4	18
81	Performance analysis of PQDCF-coated silicon image sensor using Monte-Carlo ray-trace simulation. Optics Express, 2019, 27, 9079.	3.4	1
82	A detour strategy for colloidally stable block-copolymer grafted MAPbBr ₃ quantum dots in water with long photoluminescence lifetime. Nanoscale, 2018, 10, 5820-5826.	5.6	45
83	Centimeterâ€Sized Cs ₄ PbBr ₆ Crystals with Embedded CsPbBr ₃ Nanocrystals Showing Superior Photoluminescence: Nonstoichiometry Induced Transformation and Lightâ€Emitting Applications. Advanced Functional Materials, 2018, 28, 1706567.	14.9	251
84	Morphology Evolution of Gradient-Alloyed Cd <i>_y</i> S _{1â€"<i>y</i>} @ZnS Coreâ€"Shell Quantum Dots during Transmission Electron Microscopy Determination: A Route to Illustrate Strain Effects, Journal of Physical Chemistry C, 2018, 122, 4583-4588.	3.1	13
85	Single Source Precursor Chemical Vapor Decomposition Method to Fabricate Stable, Bright Emissive Aluminum Hydroxide Phosphors for UVâ€Pumped White Lightâ€Emitting Devices. Advanced Optical Materials, 2018, 6, 1701115.	7.3	8
86	Elucidating the phase transitions and temperature-dependent photoluminescence of MAPbBr ₃ single crystal. Journal Physics D: Applied Physics, 2018, 51, 045105.	2.8	54
87	Pyridine-Modulated Mn Ion Emission Properties of C ₁₀ H ₁₂ N ₂ MnBr ₄ and C ₅ H ₆ NMnBr ₃ Single Crystals. Journal of Physical Chemistry C, 2018, 122, 3130-3137.	3.1	88
88	From Large-Scale Synthesis to Lighting Device Applications of Ternary Iâ€"Illâ€"VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. Journal of Physical Chemistry Letters, 2018, 9, 435-445.	4.6	136
89	Gram-Scale Synthesis of Blue-Emitting CH3NH3PbBr3 Quantum Dots Through Phase Transfer Strategy. Frontiers in Chemistry, 2018, 6, 444.	3.6	19
90	Perovskite Quantum Dots Embedded Composite Films Enhancing UV Response of Silicon Photodetectors for Broadband and Solarâ€Blind Light Detection. Advanced Optical Materials, 2018, 6, 1800077.	7. 3	60

#	Article	IF	Citations
91	Pâ€118: Quantum Dots ―Silica Monolith: From Alcohol Soluble Quantum Dots to High Performance Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 1654-1656.	0.3	2
92	Pâ€119: Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs. Digest of Technical Papers SID International Symposium, 2018, 49, 1657-1659.	0.3	30
93	In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Advanced Optical Materials, 2018, 6, 1800380.	7.3	176
94	Template-Free Synthesis of High-Yield Fe-Doped Cesium Lead Halide Perovskite Ultralong Microwires with Enhanced Two-Photon Absorption. Journal of Physical Chemistry Letters, 2018, 9, 4878-4885.	4.6	73
95	Efficient Light-Emitting Diodes Based on <i>in Situ</i> Fabricated FAPbBr ₃ Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process. ACS Nano, 2018, 12, 8808-8816.	14.6	237
96	Enhanced piezo-response in copper halide perovskites based PVDF composite films. Science Bulletin, 2018, 63, 1254-1259.	9.0	31
97	Polar Solvent Induced Lattice Distortion of Cubic CsPbl ₃ Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. Journal of the American Chemical Society, 2018, 140, 11705-11715.	13.7	223
98	Grainâ€Boundary "Patches―by In Situ Conversion to Enhance Perovskite Solar Cells Stability. Advanced Materials, 2018, 30, e1800544.	21.0	224
99	Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 9798-9802.	2.0	9
100	Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 9650-9654.	13.8	85
101	Colloidal Synthesis of CH ₃ NH ₃ PbBr ₃ Nanoplatelets with Polarized Emission through Selfâ€Organization. Angewandte Chemie, 2017, 129, 1806-1809.	2.0	14
102	Colloidal Synthesis of CH ₃ NH ₃ PbBr ₃ Nanoplatelets with Polarized Emission through Selfâ€Organization. Angewandte Chemie - International Edition, 2017, 56, 1780-1783.	13.8	92
103	High- <i>Q</i> Microcavity Enhanced Optical Properties of CulnS ₂ /ZnS Colloidal Quantum Dots toward Non-Photodegradation. ACS Photonics, 2017, 4, 369-377.	6.6	9
104	Hydroxyl-Terminated CuInS ₂ -Based Quantum Dots: Potential Cathode Interfacial Modifiers for Efficient Inverted Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7362-7367.	8.0	20
105	Optical detection of magnetic field with Mn4+:K2SiF6 phosphor from room to liquid helium temperatures. Applied Physics Letters, 2017, 110, 212405.	3.3	3
106	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56, 9571-9576.	13.8	98
107	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.	2.0	31
108	Alcohol-Soluble Quantum Dots: Enhanced Solution Processability and Charge Injection for Electroluminescence Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8.	2.9	18

#	Article	IF	Citations
109	Ligandâ€Controlled Formation and Photoluminescence Properties of CH ₃ NH ₃ PbBr ₃ Nanocubes and Nanowires. ChemNanoMat, 2017, 3, 303-310.	2.8	57
110	Colloidal Synthesis of Air-Stable CH ₃ NH ₃ Pbl ₃ Quantum Dots by Gaining Chemical Insight into the Solvent Effects. Chemistry of Materials, 2017, 29, 3793-3799.	6.7	199
111	Strong Polarized Photoluminescence from Stretched Perovskiteâ€Nanocrystalâ€Embedded Polymer Composite Films. Advanced Optical Materials, 2017, 5, 1700594.	7.3	63
112	53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm Whiteâ€Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1702910.	21.0	563
113	Formation of Mn doped CH ₃ NH ₃ PbBr ₃ perovskite microrods and their collective EMP lasing. Journal of Physics Communications, 2017, 1, 055018.	1.2	13
114	Mesoporous Aluminum Hydroxide Synthesized by a Singleâ€Source Precursorâ€Decomposition Approach as a Highâ€Quantumâ€Yield Blue Phosphor for UVâ€Pumped Whiteâ€Lightâ€Emitting Diodes. Advanced Material 2017, 29, 1604284.	ls21.0	47
115	Tetraphenylethylene derivative capped CH3NH3PbBr3 nanocrystals: AIE-activated assembly into superstructures. Faraday Discussions, 2017, 196, 91-99.	3.2	8
116	Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications. Chinese Chemical Letters, 2016, 27, 1124-1130.	9.0	65
117	Tumorâ€∓argeted Multimodal Optical Imaging with Versatile Cadmiumâ€Free Quantum Dots. Advanced Functional Materials, 2016, 26, 267-276.	14.9	65
118	Recombination processes in CuInS2/ZnS nanocrystals during steady-state photoluminescence. Applied Physics Letters, 2016, 108, .	3.3	8
119	Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale, 2016, 8, 7197-7202.	5.6	97
120	Nonlinear Optical Properties of Colloidal CH ₃ NH ₃ PbBr ₃ and CsPbBr ₃ Quantum Dots: A Comparison Study Using Zâ€6can Technique. Advanced Optical Materials, 2016, 4, 1732-1737.	7.3	108
121	In Situ Fabrication of Halide Perovskite Nanocrystalâ€Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights. Advanced Materials, 2016, 28, 9163-9168.	21.0	635
122	Stretchable and Thermally Stable Dual Emission Composite Films of On-Purpose Aggregated Copper Nanoclusters in Carboxylated Polyurethane for Remote White Light-Emitting Devices. ACS Applied Materials & Devices. ACS ACS Applied Materials & Devices. ACS ACS APPLIED MATERIALS & Devices. ACS	8.0	47
123	Light-Emitting Devices: All-Copper Nanocluster Based Down-Conversion White Light-Emitting Devices (Adv. Sci. 11/2016). Advanced Science, 2016, 3, .	11.2	2
124	Reprecipitation synthesis of luminescent CH ₃ NH ₃ PbBr ₃ /NaNO ₃ nanocomposites with enhanced stability. Journal of Materials Chemistry C, 2016, 4, 11387-11391.	5 . 5	85
125	Water resistant CsPbX ₃ nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chemical Science, 2016, 7, 5699-5703.	7.4	499
126	Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantumâ€Dotâ€Sensitized Solar Cells. ChemPhysChem, 2016, 17, 771-776.	2.1	40

#	Article	IF	Citations
127	Hydroxyl-Terminated CulnS ₂ Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes. Chemistry of Materials, 2016, 28, 1085-1091.	6.7	155
128	Oleylamineâ€Assisted Phaseâ€Selective Synthesis of Cu _{2â^'<i>x</i>} S Nanocrystals and the Mechanism of Phase Control. Particle and Particle Systems Characterization, 2015, 32, 907-914.	2.3	41
129	Paper No S10.1: Emerging Materials and Processes for Quantum Dots based Display Technology (Invited) Tj ETQo	110.784 0.3	:314 rgBT /C
130	Emulsion Synthesis of Size-Tunable CH ₃ NH ₃ PbBr ₃ Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Applied Materials & Diodes, 7, 28128-28133.	8.0	429
131	Brightly Luminescent and Color-Tunable Colloidal CH ₃ NH ₃ PbX ₃ (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 2015, 9, 4533-4542.	14.6	2,001
132	Ray-trace simulation of CulnS(Se)_2 quantum dot based luminescent solar concentrators. Optics Express, 2015, 23, A858.	3.4	48
133	Halide perovskite quantum dots: potential candidates for display technology. Science Bulletin, 2015, 60, 1622-1624.	9.0	60
134	Template Synthesis of CuInS ₂ Nanocrystals from In ₂ S ₃ Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells. Chemistry of Materials, 2015, 27, 5949-5956.	6.7	132
135	Probing Exciton Move and Localization in Solution-Grown Colloidal CdSe _{<i>x</i>} S _{1â€"<i>x</i>} Alloyed Nanowires by Temperature- and Time-Resolved Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 22709-22717.	3.1	12
136	Aggregationâ€Induced Emission Features of Organometal Halide Perovskites and Their Fluorescence Probe Applications. Advanced Optical Materials, 2015, 3, 112-119.	7.3	87
137	Ultralong Homogeneously Alloyed CdSe _x S _{1â€x} Nanowires with Highly Polarized and Color‶unable Emissions. Advanced Optical Materials, 2014, 2, 885-891.	7.3	18
138	Pâ€80: Intelligent Remote Lightâ€Emitting Systems using PMMA and CuInS ₂ Nanocrystals Composite Films. Digest of Technical Papers SID International Symposium, 2014, 45, 1285-1287.	0.3	1
139	Controlled hybridization of Sn–SnO ₂ nanoparticles via simple-programmed microfluidic processes for tunable ultraviolet and blue emissions. Journal of Materials Chemistry C, 2014, 2, 7687-7694.	5.5	27
140	Highly transparent and colour-tunable composite films with increased quantum dot loading. Journal of Materials Chemistry C, 2014, 2, 10031-10036.	5.5	28
141	Sensitive single-color fluorescence "off–on―switch system for dsDNA detection based on quantum dots-ruthenium assembling dyads. Biosensors and Bioelectronics, 2014, 56, 51-57.	10.1	27
142	PVA Hydrogel Embedded with Quantum Dots: A Potential Scalable and Healable Display Medium for Holographic 3D Applications. Advanced Optical Materials, 2014, 2, 338-342.	7.3	23
143	General Synthesis and White Light Emission of Diluted Magnetic Semiconductor Nanowires Using Single-Source Precursors. Chemistry of Materials, 2013, 25, 3260-3266.	6.7	24
144	Controllable Transformation from Rhombohedral Cu $<$ sub $>1.8sub>S Nanocrystals to Hexagonal CuS Clusters: Phase- and Composition-Dependent Plasmonic Properties. Chemistry of Materials, 2013, 25, 4828-4834.$	6.7	135

#	Article	IF	Citations
145	Integration of CulnS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale, 2013, 5, 3514.	5.6	145
146	Red emissive CuInS_2-based nanocrystals: a potential phosphor for warm white light-emitting diodes. Optics Express, 2013, 21, 10105.	3.4	55
147	Tuning the Luminescence Properties of Colloidal I–Ill–VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. Journal of Physical Chemistry Letters, 2012, 3, 3167-3175.	4.6	402
148	Transparent, flexible and luminescent composite films by incorporating CulnS2 based quantum dots into a cyanoethyl cellulose matrix. RSC Advances, 2012, 2, 2675.	3.6	23
149	Highly Emissive and Colorâ€Tunable CuInS ₂ â€Based Colloidal Semiconductor Nanocrystals: Offâ€Stoichiometry Effects and Improved Electroluminescence Performance. Advanced Functional Materials, 2012, 22, 2081-2088.	14.9	449
150	Colloidal CulnSe ₂ Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence. Journal of Physical Chemistry C, 2011, 115, 12396-12402.	3.1	176
151	Template-free solution growth of highly regular, crystal orientation-ordered C ₆₀ nanorod bundles. Journal of Materials Chemistry, 2010, 20, 953-956.	6.7	21
152	Noninjection Gram-Scale Synthesis of Monodisperse Pyramidal CuInS ₂ Nanocrystals and Their Size-Dependent Properties. ACS Nano, 2010, 4, 5253-5262.	14.6	386
153	Electronic States and Exciton Fine Structure in Colloidal CdTe Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 10465-10470.	3.1	25
154	Shape Tuning of Type II CdTe-CdSe Colloidal Nanocrystal Heterostructures through Seeded Growth. Journal of the American Chemical Society, 2009, 131, 9170-9171.	13.7	79
155	Binaphthylâ€Containing Green―and Redâ€Emitting Molecules for Solutionâ€Processable Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 3299-3306.	14.9	108
156	Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS ₂ Nanocrystals. Chemistry of Materials, 2008, 20, 6434-6443.	6.7	519
157	Synthesis of In2 S3 Nanoplates and Their Self-Assembly into Superlattices. Journal of Nanoscience and Nanotechnology, 2007, 7, 4346-4352.	0.9	10
158	Synthesis and Cathodoluminescence of Morphology-Tunable SiO ₂ Nanotubes and ZnS/SiO ₂ Coreâ^'Shell Structures Using CdSe Nanocrystals as the Seeds. Journal of Physical Chemistry C, 2007, 111, 11604-11611.	3.1	38
159	Design and Fabrication of Rocketlike Tetrapodal CdS Nanorods by Seed-Epitaxial Metalâ^'Organic Chemical Vapor Deposition. Crystal Growth and Design, 2007, 7, 488-491.	3.0	63
160	Monodispersed ZnSe Colloidal Microspheres:  Preparation, Characterization, and Their 2D Arrays. Langmuir, 2007, 23, 9008-9013.	3.5	38
161	Electrodeposition and electrocatalytic properties of platinum nanoparticles on multi-walled carbon nanotubes: effect of the deposition conditions. Mikrochimica Acta, 2007, 158, 327-334.	5.0	19
162	In-situ Fabricated Perovskite Quantum Dots:From Synthesis to Applications., 0,,.		0