Frédéric A Perras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3670495/publications.pdf

Version: 2024-02-01

81 papers 3,029 citations

147801 31 h-index 53 g-index

87 all docs

87 docs citations

87 times ranked

2902 citing authors

#	Article	IF	CITATIONS
1	Upcycling Single-Use Polyethylene into High-Quality Liquid Products. ACS Central Science, 2019, 5, 1795-1803.	11,3	283
2	Catalytic upcycling of high-density polyethylene via a processive mechanism. Nature Catalysis, 2020, 3, 893-901.	34.4	262
3	Dynamic Nuclear Polarization Solid-State NMR in Heterogeneous Catalysis Research. ACS Catalysis, 2015, 5, 7055-7062.	11.2	160
4	Surface Termination of CsPbBr ₃ Perovskite Quantum Dots Determined by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2020, 142, 6117-6127.	13.7	135
5	Natural Abundance ¹⁷ O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy. Journal of the American Chemical Society, 2015, 137, 8336-8339.	13.7	126
6	Potent inhibition of ice recrystallization by low molecular weight carbohydrate-based surfactants and hydrogelators. Chemical Science, 2012, 3, 1408.	7.4	102
7	Zero Thermal Expansion in ZrMgMo ₃ O ₁₂ : NMR Crystallography Reveals Origins of Thermoelastic Properties. Chemistry of Materials, 2015, 27, 2633-2646.	6.7	90
8	QUESTâ€"QUadrupolar Exact SofTware: A fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 2012, 45-46, 36-44.	2.3	77
9	DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2016, 7, 2322-2327.	4.6	77
10	Direct Investigation of Covalently Bound Chlorine in Organic Compounds by Solid‧tate ³⁵ Clâ€NMR Spectroscopy and Exact Spectral Line‧hape Simulations. Angewandte Chemie - International Edition, 2012, 51, 4227-4230.	13.8	69
11	Probing Surface Hydrogen Bonding and Dynamics by Natural Abundance, Multidimensional, ¹⁷ O DNP-NMR Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 11535-11544.	3.1	65
12	Natural Abundance ¹⁷ O DNPâ€NMR Provides Precise Oâ^'H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2017, 56, 9165-9169.	13.8	63
13	Characterizing Substrate–Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. Journal of the American Chemical Society, 2017, 139, 2702-2709.	13.7	59
14	Signal enhancement in solid-state NMR of quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 2013, 51-52, 1-15.	2.3	58
15	Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. Journal of Physical Chemistry A, 2017, 121, 623-630.	2.5	57
16	Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica. Journal of the American Chemical Society, 2018, 140, 3940-3951.	13.7	56
17	Multinuclear Magnetic Resonance Crystallographic Structure Refinement and Cross-Validation Using Experimental and Computed Electric Field Gradients: Application to Na ₂ Al ₂ B ₂ O ₇ . Journal of Physical Chemistry C, 2012, 116. 19472-19482.	3.1	52
18	Catalytic carbon-carbon bond cleavage and carbon-element bond formation give new life for polyolefins as biodegradable surfactants. CheM, 2021, 7, 1347-1362.	11.7	50

#	Article	IF	CITATIONS
19	Spying on the boron–boron triple bond using spin–spin coupling measured from ¹¹ B solid-state NMR spectroscopy. Chemical Science, 2015, 6, 3378-3382.	7.4	47
20	Optimal sample formulations for DNP SENS: The importance of radical-surface interactions. Current Opinion in Colloid and Interface Science, 2018, 33, 9-18.	7.4	42
21	Boron–boron <i>J</i> coupling constants are unique probes of electronic structure: a solid-state NMR and molecular orbital study. Chemical Science, 2014, 5, 2428-2437.	7.4	40
22	Sodium-23 Ssolid-Sstate Snuclear Smagnetic Sresonance of Scommercial Ssodium Snaproxen and its Ssolvates. Journal of Pharmaceutical Sciences, 2012, 101, 2930-2940.	3.3	39
23	Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. Journal of the American Chemical Society, 2019, 141, 6325-6337.	13.7	38
24	Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR. Chemical Communications, 2016, 52, 1859-1862.	4.1	36
25	Measuring dipolar and <i>J</i> coupling between quadrupolar nuclei using double-rotation NMR. Journal of Chemical Physics, 2013, 138, 174202.	3.0	34
26	Effects of biradical deuteration on the performance of DNP: towards better performing polarizing agents. Physical Chemistry Chemical Physics, 2016, 18, 65-69.	2.8	34
27	Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides. Journal of the American Chemical Society, 2018, 140, 6308-6316.	13.7	34
28	PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2015, 17, 22616-22622.	2.8	33
29	In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?. ChemPhysChem, 2017, 18, 2279-2287.	2.1	32
30	Shedding light on the atomic-scale structure of amorphous silica–alumina and its Brønsted acid sites. Physical Chemistry Chemical Physics, 2019, 21, 19529-19537.	2.8	32
31	Symmetry-Amplified <i>J</i> Splittings for Quadrupolar Spin Pairs: A Solid-State NMR Probe of Homoatomic Covalent Bonds. Journal of the American Chemical Society, 2013, 135, 12596-12599.	13.7	31
32	<i>t</i> ₁ -Noise eliminated dipolar heteronuclear multiple-quantum coherence solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 20815-20828.	2.8	31
33	Sterically Driven Olefin Metathesis: The Impact of Alkylidene Substitution on Catalyst Activity. Organometallics, 2016, 35, 691-698.	2.3	30
34	Site-Specific Sodiation Mechanisms of Selenium in Microporous Carbon Host. Nano Letters, 2020, 20, 918-928.	9.1	30
35	Surface Organometallic Chemistry of Supported Iridium(III) as a Probe for Organotransition Metal–Support Interactions in C–H Activation. ACS Catalysis, 2018, 8, 5363-5373.	11.2	29
36	Improved strategies for DNP-enhanced 2D 1H-X heteronuclear correlation spectroscopy of surfaces. Solid State Nuclear Magnetic Resonance, 2017, 87, 38-44.	2.3	27

#	Article	IF	CITATIONS
37	Direct ¹⁷ 0 dynamic nuclear polarization of single-site heterogeneous catalysts. Chemical Communications, 2018, 54, 3472-3475.	4.1	26
38	Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry, 2020, 22, 4676-4682.	9.0	25
39	NMR crystallography of sodium diphosphates: combining dipolar, shielding, quadrupolar, diffraction, and computational information. CrystEngComm, 2013, 15, 8727.	2.6	24
40	Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization. Journal of Physical Chemistry Letters, 2020, 11, 5655-5660.	4.6	24
41	Large-scale <i>ab initio</i> simulations of MAS DNP enhancements using a Monte Carlo optimization strategy. Journal of Chemical Physics, 2018, 149, 154202.	3.0	22
42	Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2020, 109, 101685.	2.3	22
43	Residual dipolar coupling between quadrupolar nuclei under magic-angle spinning and double-rotation conditions. Journal of Magnetic Resonance, 2011, 213, 82-89.	2.1	21
44	Direct Characterization of Metal–Metal Bonds between Nuclei with Strong Quadrupolar Interactions via NMR Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 4049-4054.	4.6	21
45	Theoretical study of homonuclear J coupling between quadrupolar spins: Single-crystal, DOR, and J-resolved NMR. Journal of Magnetic Resonance, 2014, 242, 23-32.	2.1	19
46	High-Field Magic Angle Spinning Dynamic Nuclear Polarization Using Radicals Created by \hat{I}^3 -Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 4770-4776.	4.6	19
47	Condensed Phase Deactivation of Solid Br \tilde{A}_i nsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural. ACS Catalysis, 2019, 9, 11568-11578.	11.2	19
48	23Na double-rotation NMR of sodium nucleotides leads to the discovery of a new dCMP hendecahydrate. Physical Chemistry Chemical Physics, 2012, 14, 4677.	2.8	18
49	High sensitivity and resolution in ⁴³ Ca solid-state NMR experiments. Canadian Journal of Chemistry, 2015, 93, 799-807.	1.1	18
50	Solid-state ^{185/187} Re NMR and GIPAW DFT study of perrhenates and Re ₂ (CO) ₁₀ : chemical shift anisotropy, NMR crystallography, and a metal–metal bond. Physical Chemistry Chemical Physics, 2015, 17, 10118-10134.	2.8	18
51	Observation of CHâ‹â‹i€ Interactions between Methyl and Carbonyl Groups in Proteins. Angewandte Chemie - International Edition, 2017, 56, 7564-7567.	13.8	17
52	Synthesis of Supported Pd ⁰ Nanoparticles from a Single-Site Pd ²⁺ Surface Complex by Alkene Reduction. Chemistry of Materials, 2018, 30, 1032-1044.	6.7	17
53	Synthesis-enabled exploration of chiral and polar multivalent quaternary sulfides. Chemical Science, 2021, 12, 14718-14730.	7.4	16
54	Third time's the charm: intricate non-centrosymmetric polymorphism in $\langle i \rangle Ln \langle i \rangle SiP \langle sub \rangle 3 \langle sub \rangle$ ($\langle i \rangle Ln \langle i \rangle = La$ and Ce) induced by distortions of phosphorus square layers. Dalton Transactions, 2021, 50, 6463-6476.	3 . 3	15

#	Article	IF	CITATIONS
55	Measurement of Î"1J(199Hg, 31P) in [HgPCy3(OAc)2]2 and relativistic ZORA DFT investigations of mercuryâ€"phosphorus coupling tensors. Solid State Nuclear Magnetic Resonance, 2009, 36, 182-191.	2.3	13
56	²³ Na magic-angle spinning and double-rotation NMR study of solid forms of sodium valproate. Canadian Journal of Chemistry, 2014, 92, 9-15.	1.1	13
57	Methyl-Driven Overhauser Dynamic Nuclear Polarization. Journal of Physical Chemistry Letters, 2022, 13, 4000-4006.	4.6	13
58	Dynamic Nuclear Polarization of Metal-Doped Oxide Glasses: A Test of the Generality of Paramagnetic Metal Polarizing Agents. Journal of Physical Chemistry C, 2020, 124, 23126-23133.	3.1	12
59	Direct determination of cellulosic glucan content in starch-containing samples. Cellulose, 2021, 28, 1989-2002.	4.9	12
60	Enhanced 1H-X D-HMQC performance through improved 1H homonuclear decoupling. Solid State Nuclear Magnetic Resonance, 2019, 98, 12-18.	2.3	11
61	Revealing the Configuration and Conformation of Surface Organometallic Catalysts with DNP-Enhanced NMR. Journal of Physical Chemistry C, 2021, 125, 13433-13442.	3.1	11
62	Determination of the chemical shift tensor anisotropy and asymmetry of strongly dipolar coupled protons under fast MAS. Solid State Nuclear Magnetic Resonance, 2021, 114, 101743.	2.3	11
63	Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle. Journal of Magnetic Resonance, 2016, 264, 125-130.	2.1	10
64	Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei. Pure and Applied Chemistry, 2016, 88, 95-111.	1.9	10
65	Natural Abundance 17 O DNPâ€NMR Provides Precise Oâ^'H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts. Angewandte Chemie, 2017, 129, 9293-9297.	2.0	10
66	Hybrid quantum-classical simulations of magic angle spinning dynamic nuclear polarization in very large spin systems. Journal of Chemical Physics, 2022, 156, 124112.	3.0	10
67	Linear-scaling <i>ab initio</i> simulations of spin diffusion in rotating solids. Journal of Chemical Physics, 2019, 151, 034110.	3.0	9
68	Efficiency analysis of helium-cooled MAS DNP: case studies of surface-modified nanoparticles and homogeneous small-molecule solutions. Physical Chemistry Chemical Physics, 2021, 23, 4919-4926.	2.8	9
69	Observing the three-dimensional dynamics of supported metal complexes. Inorganic Chemistry Frontiers, 2021, 8, 1416-1431.	6.0	9
70	Activation of Low-Valent, Multiply M–M Bonded Group VI Dimers toward Catalytic Olefin Metathesis via Surface Organometallic Chemistry. Organometallics, 2020, 39, 1035-1045.	2.3	8
71	Determining the Three-Dimensional Structures of Silica-Supported Metal Complexes from the Ground Up. Inorganic Chemistry, 2022, 61, 1067-1078.	4.0	8
72	A Heterogeneous Palladium Catalyst for the Polymerization of Olefins Prepared by Halide Abstraction Using Surface R ₃ Si ⁺ Species. Angewandte Chemie, 2022, 134, .	2.0	7

#	Article	IF	CITATIONS
73	Observation of CHâ‹â‹â‹ï€ Interactions between Methyl and Carbonyl Groups in Proteins. Angewandte Chemie, 2017, 129, 7672-7675.	2.0	5
74	Removal of sidebands in double-rotation NMR in real time. Journal of Magnetic Resonance, 2011, 211, 234-239.	2.1	3
75	Phase-sensitive \hat{I}^3 -encoded recoupling of heteronuclear dipolar interactions and 1H chemical shift anisotropy. Solid State Nuclear Magnetic Resonance, 2021, 111, 101712.	2.3	3
76	A ZORA-DFT and NLMO study of the one-bond fluorineâ€"X indirect nuclear spin-spin coupling tensors for various VSEPR geometries. Canadian Journal of Chemistry, 2011, 89, 789-802.	1.1	2
77	Evolution of structure and transport properties of the Ba8Cu16P30 clathrate-I framework with the introduction of Ga. Applied Physics Letters, 2022, 120, .	3.3	2
78	The anomalous solidification of concrete grindings from acid treatment. Cement and Concrete Research, 2019, 116, 65-69.	11.0	1
79	High Field Solid-State NMR of Challenging Nuclei in Inorganic Systems. , 2021, , .		1
80	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1
81	Innentitelbild: Natural Abundance ¹⁷ O DNPâ€NMR Provides Precise Oâ^'H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts (Angew. Chem. 31/2017). Angewandte Chemie, 2017, 129, 9032-9032.	2.0	0