Yves H Geerts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3669556/publications.pdf

Version: 2024-02-01

44069 33894 10,494 156 48 99 citations h-index g-index papers 159 159 159 10793 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discotic liquid crystals: a new generation of organic semiconductors. Chemical Society Reviews, 2007, 36, 1902.	38.1	1,330
2	Thieno[3,2- <i>b</i>]thiopheneâ^'Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. Journal of the American Chemical Society, 2011, 133, 3272-3275.	13.7	854
3	Semi-metallic polymers. Nature Materials, 2014, 13, 190-194.	27.5	722
4	Charge Transport Properties in Discotic Liquid Crystals:  A Quantum-Chemical Insight into Structureâ^'Property Relationships. Journal of the American Chemical Society, 2004, 126, 3271-3279.	13.7	464
5	Electrochemistry, Spectroscopy and Electrogenerated Chemiluminescence of Perylene, Terrylene, and Quaterrylene Diimides in Aprotic Solution. Journal of the American Chemical Society, 1999, 121, 3513-3520.	13.7	453
6	Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society, 2011, 133, 15073-15084.	13.7	381
7	Rapid Charge Transport Along Self-Assembling Graphitic Nanowires. Advanced Materials, 1998, 10, 36-38.	21.0	228
8	Substrateâ€Induced and Thinâ€Film Phases: Polymorphism of Organic Materials on Surfaces. Advanced Functional Materials, 2016, 26, 2233-2255.	14.9	221
9	Doping of Organic Semiconductors: Impact of Dopant Strength and Electronic Coupling. Angewandte Chemie - International Edition, 2013, 52, 7751-7755.	13.8	186
10	High Charge-Carrier Mobility in ¨I€-Deficient Discotic Mesogens: Design and Structure-Property Relationship. Chemistry - A European Journal, 2005, 11, 3349-3362.	3.3	168
11	Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nature Communications, 2015, 6, 6330.	12.8	162
12	Highly Fluorescent Crystalline and Liquid Crystalline Columnar Phases of Pyrene-Based Structures. Journal of Physical Chemistry B, 2006, 110, 7653-7659.	2.6	161
13	Bulky Endâ€Capped [1]Benzothieno[3,2â€∢i>b⟨/i>]benzothiophenes: Reaching Highâ€Mobility Organic Semiconductors by Fine Tuning of the Crystalline Solidâ€State Order. Advanced Materials, 2015, 27, 3066-3072.	21.0	155
14	1,3,6,8-Tetraphenylpyrene Derivatives: Towards Fluorescent Liquid-Crystalline Columns?. Advanced Functional Materials, 2004, 14, 649-659.	14.9	153
15	Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions. Nature Communications, 2016, 7, 10736.	12.8	147
16	Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2â€∢i>b⟨/i>][1]benzothiophene. Advanced Materials, 2016, 28, 7106-7114.	21.0	138
17	Electronic Delocalization in Discotic Liquid Crystals:Â A Joint Experimental and Theoretical Study. Journal of the American Chemical Society, 2004, 126, 11889-11899.	13.7	136
18	Molecular Semiconductors for Logic Operations: Deadâ€End or Bright Future?. Advanced Materials, 2020, 32, e1905909.	21.0	135

#	Article	IF	Citations
19	Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors. Chemistry of Materials, 2011, 23, 768-770.	6.7	126
20	Chasing the "Killer―Phonon Mode for the Rational Design of Lowâ€Disorder, Highâ€Mobility Molecular Semiconductors. Advanced Materials, 2019, 31, e1902407.	21.0	126
21	Effect of Interfaces on the Alignment of a Discotic Liquidâ °Crystalline Phthalocyanine. Langmuir, 2006, 22, 7798-7806.	3.5	125
22	Quaterrylenebis(dicarboximide)s: near infrared absorbing and emitting dyes. Journal of Materials Chemistry, 1998, 8, 2357-2369.	6.7	124
23	Synthesis of Soluble Perylenebisamidine Derivatives. Novel Long-Wavelength Absorbing and Fluorescent Dyes. Chemistry of Materials, 1997, 9, 495-500.	6.7	117
24	Liquid Crystalline Metal-Free Phthalocyanines Designed for Charge and Exciton Transport. Journal of Physical Chemistry B, 2005, 109, 20315-20323.	2.6	101
25	What Currently Limits Charge Carrier Mobility in Crystals of Molecular Semiconductors?. Israel Journal of Chemistry, 2014, 54, 595-620.	2.3	97
26	Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nature Communications, 2018, 9, 278.	12.8	90
27	Poly[2]catenanes and Cyclic Oligo[2]catenanes Containing Alternating Topological and Covalent Bonds: Synthesis and Characterization. Chemistry - A European Journal, 1999, 5, 1841-1851.	3.3	89
28	Novel perylene-containing polymers. Macromolecular Chemistry and Physics, 1996, 197, 4029-4044.	2.2	83
29	Close Encounters of the 3D Kind – Exploiting High Dimensionality in Molecular Semiconductors. Advanced Materials, 2013, 25, 1948-1954.	21.0	82
30	Discotic mesogens with potential electron carrier properties. Chemical Communications, 2001, , 2074.	4.1	76
31	Homeotropic Alignment of a Discotic Liquid Crystal Induced by a Sacrificial Layer. Journal of Physical Chemistry C, 2009, 113, 14398-14406.	3.1	74
32	Electroluminescence from New Polynorbornenes That Contain Blue-Light-Emitting and Charge-Transport Side Chains. Macromolecules, 1997, 30, 3553-3559.	4.8	72
33	Homeotropic and Planar Alignment of Discotic Liquid Crystals: The Role of the Columnar Mesophase. Chemistry of Materials, 2009, 21, 5867-5874.	6.7	71
34	Synthesis of rod-coil block copolymers via end-functionalized poly(p-phenylene)s. Macromolecular Rapid Communications, 1998, 19, 385-389.	3.9	70
35	Synthesis of high molecular weighttrans-poly(9,9-di-n-octylfluorene-2,7-vinylene) by the acyclic diene metathesis polymerization using molybdenum catalysts. Journal of Polymer Science Part A, 2001, 39, 2463-2470.	2.3	68
36	Synthesis and characterization of a poly(para-phenyleneethynylene)-block-poly(ethylene oxide) rod-coil block copolymer. Macromolecular Rapid Communications, 1998, 19, 275-281.	3.9	65

#	Article	IF	CITATIONS
37	Crystallisation kinetics in thin films of dihexyl-terthiophene: the appearance of polymorphic phases. RSC Advances, 2012, 2, 4404.	3.6	64
38	Toward Single Crystal Thin Films of Terthiophene by Directional Crystallization Using a Thermal Gradient. Crystal Growth and Design, 2011, 11, 3663-3672.	3.0	63
39	Thienoacene dimers based on the thieno[3,2-b]thiophene moiety: synthesis, characterization and electronic properties. Journal of Materials Chemistry C, 2015, 3, 674-685.	5.5	62
40	Synthesis of oligo[2]catenanes. Macromolecular Chemistry and Physics, 1995, 196, 3425-3435.	2.2	59
41	Synthesis and Characterization of Poly[2]-catenanes Containing Rigid Catenane Segments. Macromolecules, 1999, 32, 1737-1745.	4.8	58
42	A "Smart" Ultrathin Photochromic Layer. Langmuir, 1995, 11, 2856-2859.	3.5	57
43	Surface Plasmon Investigations of Light-Induced Modulation in the Optical Thickness of Molecularly Thin Photochromic Layers. Langmuir, 1996, 12, 2976-2980.	3.5	54
44	Substrate-Induced Phase of a [1]Benzothieno[3,2- <i>b</i>]benzothiophene Derivative and Phase Evolution by Aging and Solvent Vapor Annealing. ACS Applied Materials & Evolution by Aging and Solvent Vapor Annealing. ACS Applied Materials & Evolution Vapor Annealing. ACS Appl	8.0	54
45	Lithographic Alignment of Discotic Liquid Crystals: A New Time–Temperature Integrating Framework. Advanced Materials, 2009, 21, 4688-4691.	21.0	53
46	Liquid crystalline octaalkoxycarbonyl phthalocyanines: design, synthesis, electronic structure, self-aggregation and mesomorphism. Journal of Materials Chemistry, 2007, 17, 1777-1784.	6.7	52
47	Synthesis of All-Trans High Molecular Weight Poly(<i>N</i> -alkylcarbazole-2,7-vinylene)s and Poly(9,9-dialkylfluorene-2,7-vinylene)s by Acyclic Diene Metathesis (ADMET) Polymerization Using Rutheniumâ^'Carbene Complex Catalysts. Macromolecules, 2009, 42, 5104-5111.	4.8	52
48	Synthesis of diketopyrrolopyrrole (DPP) derivatives comprising bithiophene moieties. Tetrahedron, 2010, 66, 1837-1845.	1.9	51
49	X-ray Structural Investigation of Nonsymmetrically and Symmetrically Alkylated [1]Benzothieno[3,2- <i>b</i>)benzothiophene Derivatives in Bulk and Thin Films. ACS Applied Materials & amp; Interfaces, 2014, 6, 13413-13421.	8.0	51
50	Synthesis of a novel poly[2]-catenane containing rigid catenanes. Macromolecular Rapid Communications, 1997, 18, 233-241.	3.9	46
51	Nanoscale investigation of the electrical properties in semiconductor polymer–carbon nanotube hybrid materials. Nanoscale, 2012, 4, 2705.	5.6	45
52	Uniaxial Alignment of Nanoconfined Columnar Mesophases. Nano Letters, 2007, 7, 2627-2632.	9.1	44
53	Acyclic diene metathesis polymerization of 2,5-dialkyl-1,4-divinylbenzene with molybdenum or ruthenium catalysts: Factors affecting the precise synthesis of defect-free, high-molecular-weighttrans-poly(p-phenylene vinylene)s. Journal of Polymer Science Part A, 2005, 43, 6166-6177.	2.3	43
54	Synthesis and Supramolecular Organization of Regioregular Polythiophene Block Oligomers. Journal of Organic Chemistry, 2010, 75, 1561-1568.	3.2	43

#	Article	IF	CITATION
55	N-Doped TiO ₂ Photocatalyst Coatings Synthesized by a Cold Atmospheric Plasma. Langmuir, 2019, 35, 7161-7168.	3 . 5	43
56	Liquid crystalline perylene-3,4-dicarboximide derivatives with high thermal and photochemical stability. Journal of Materials Chemistry, 1998, 8, 61-64.	6.7	42
57	DFT-Assisted Polymorph Identification from Lattice Raman Fingerprinting. Journal of Physical Chemistry Letters, 2017, 8, 3690-3695.	4.6	42
58	Exclusive End Functionalization of all-trans-Poly(fluorene vinylene)s Prepared by Acyclic Diene Metathesis Polymerization: Facile Efficient Synthesis of Amphiphilic Triblock Copolymers by Grafting Poly(ethylene glycol). Macromolecules, 2008, 41, 4245-4249.	4.8	41
59	Synthesis of Isomerically Pure <i>anti</i> -Anthradithiophene Derivatives. Organic Letters, 2011, 13, 5208-5211.	4.6	41
60	Synthesis of mesogenic phthalocyanine-C ₆₀ donor–acceptor dyads designed for molecular heterojunction photovoltaic devices. Beilstein Journal of Organic Chemistry, 2009, 5, 49.	2.2	40
61	Straightforward access to diketopyrrolopyrrole (DPP) dimers. Dyes and Pigments, 2013, 97, 198-208.	3.7	38
62	Miscibility between Differently Shaped Mesogens: Structural and Morphological Study of a Phthalocyanine-Perylene Binary System. Journal of Physical Chemistry B, 2009, 113, 5448-5457.	2.6	37
63	Remarkable Miscibility between Disk- and Lathlike Mesogens. Chemistry of Materials, 2005, 17, 4273-4277.	6.7	35
64	Metal-Free Phthalocyanines Bearing Eight Alkylsulfonyl Substituents: Design, Synthesis, Electronic Structure, and Mesomorphism of New Electron-Deficient Mesogens. Chemistry of Materials, 2009, 21, 2789-2797.	6.7	35
65	Symmetrical and Nonsymmetrical Liquid Crystalline Oligothiophenes: Convenient Synthesis and Transition-Temperature Engineering. European Journal of Organic Chemistry, 2007, 2007, 1256-1261.	2.4	34
66	Precise Synthesis of Poly(fluorene-2,7-vinylene)s Containing Oligo(thiophene)s at the Chain Ends: Unique Emission Properties by the End Functionalization. Macromolecules, 2011, 44, 3705-3711.	4.8	33
67	Design, synthesis, chemical stability, packing, cyclic voltammetry, ionisation potential, and charge transport of [1]benzothieno[3,2-b][1]benzothiophene derivatives. Journal of Materials Chemistry C, 2016, 4, 4863-4879.	5. 5	33
68	The role of H-bonds in the solid state organization of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) structures: bis(hydroxy-hexyl)-BTBT, as a functional derivative offering efficient air stable organic field effect transistors (OFETs). Journal of Materials Chemistry C, 2016, 4, 6742-6749.	5.5	33
69	Order, Viscoelastic, and Dielectric Properties of Symmetric and Asymmetric Alkyl[1]benzothieno[3,2-b][1]benzothiophenes. Journal of Physical Chemistry B, 2014, 118, 1443-1451.	2.6	32
70	Liquidâ€Gated Organic Electronic Devices Based on Highâ€Performance Solutionâ€Processed Molecular Semiconductor. Advanced Electronic Materials, 2017, 3, 1700159.	5.1	28
71	Monolayer Control of Discotic Liquid Crystal by Electromigration of Dewetted Layers in Thin Film Devices. Journal of the American Chemical Society, 2008, 130, 11953-11958.	13.7	27
72	Single Atom Substitution Alters the Polymorphic Transition Mechanism in Organic Electronic Crystals. Chemistry of Materials, 2019, 31, 9115-9126.	6.7	27

#	Article	IF	CITATIONS
73	Synthesis of 1,6-, 2,7-, 3,8-, and 4,9-lsomers of Didodecyl[1]benzothieno[3,2- $\langle i \rangle$ b $\langle i \rangle$][1]benzothiophenes. Journal of Organic Chemistry, 2013, 78, 7741-7748.	3.2	26
74	Dynamics of Monolayer–Island Transitions in 2,7â€Dioctylâ€benzothienobenzthiophene Thin Films. ChemPhysChem, 2013, 14, 2554-2559.	2.1	26
75	Polymorphism in Bulk and Thin Films: The Curious Case of Dithiophene-DPP(Boc)-Dithiophene. Journal of Physical Chemistry C, 2014, 118, 657-669.	3.1	26
76	Understanding the Role of Bulky Side Chains on Polymorphism of BTBT-Based Organic Semiconductors. Crystal Growth and Design, 2020, 20, 1646-1654.	3.0	26
77	Absorption, Photoluminescence, and Polarized Raman Spectra of a Fourfold Alkoxy-Substituted Phthalocyanine Liquid Crystal. Journal of Physical Chemistry C, 2011, 115, 12150-12157.	3.1	25
78	Substrateâ€Induced Crystal Plastic Phase of a Discotic Liquid Crystal. Advanced Materials, 2012, 24, 658-662.	21.0	25
79	Transition temperature engineering of octaalkoxycarbonyl phthalocyanines. Journal of Materials Chemistry, 2007, 17, 3002.	6.7	24
80	Organic Single Crystals: An Essential Step to New Physics and Higher Performances of Optoelectronic Devices. Advanced Functional Materials, 2016, 26, 2229-2232.	14.9	24
81	Integration of self-assembled discotic-based fibres into field-effect transistors: a comparison of preparation approaches. Journal of Materials Chemistry, 2011, 21, 206-213.	6.7	23
82	Polymorphism of dioctyl-terthiophene within thin films: The role of the first monolayer. Chemical Physics Letters, 2015, 630, 12-17.	2.6	23
83	Enhancing Longâ€Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surfaceâ€Induced Polymorphs. Advanced Functional Materials, 2020, 30, 2006115.	14.9	23
84	Practical One-step Synthesis of Symmetrical Liquid Crystalline Dialkyloligothiophenes for Molecular Electronic Applications. Chemistry Letters, 2006, 35, 166-167.	1.3	22
85	Homeotropic alignment in films of a mesogenic phthalocyanine depends on the nature of interactions with the surface. Mendeleev Communications, 2009, 19, 185-186.	1.6	22
86	Interface Induced Crystal Structures of Dioctyl-Terthiophene Thin Films. Langmuir, 2012, 28, 8530-8536.	3.5	22
87	Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient. Macromolecules, 2017, 50, 5877-5891.	4.8	22
88	Hybrid Mechanism of Nucleation and Cooperative Propagation in a Single-Crystal-to-Single-Crystal Transition of a Molecular Crystal. Crystal Growth and Design, 2018, 18, 4245-4251.	3.0	22
89	Self-assembly of hydrogen-bond assisted supramolecular azatriphenylene architectures. Soft Matter, 2008, 4, 303-310.	2.7	21
90	Synthesis of poly[$(4,4\hat{a}\in^2$ -(dihexyl)dithieno($3,2$ -b; $2\hat{a}\in^2$, $3\hat{a}\in^2$ -d)silole)] and copolymerization with 3-hexylthiophene: new semiconducting materials with extended optical absorption. Polymer Chemistry, 2013, 4, 4303.	3.9	21

#	Article	IF	CITATIONS
91	Nanocontrolled Bending of Discotic Columns by Spiral Networks. Small, 2008, 4, 728-732.	10.0	20
92	Ambipolar organic field-effect transistors with balanced mobilities through solvent–vapour annealing induced phase-separation of bi-component mixtures. Journal of Materials Chemistry, 2012, 22, 9509.	6.7	20
93	Non-symmetrical oligothiophenes with â€~incompatible' substituents. Tetrahedron, 2007, 63, 941-946.	1.9	19
94	Highâ€Temperature Ferromagnetism of a Discotic Liquid Crystal Dilutely Intercalated with Iron(III) Phthalocyanine. Advanced Materials, 2010, 22, 4405-4409.	21.0	19
95	Tuning Spin Current Injection at Ferromagnet-Nonmagnet Interfaces by Molecular Design. Physical Review Letters, 2020, 124, 027204.	7.8	19
96	Structural and Charge-Transport Properties of a Liquid-Crystalline \hat{l}_{\pm} , \hat{l}_{∞} -Disubstituted Thiophene Derivative: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry C, 2010, 114, 4617-4627.	3.1	18
97	Influence of Solubilizing Group Removal Rate on the Morphology and Crystallinity of a Diketopyrrolopyrrole-Based Compound. Crystal Growth and Design, 2014, 14, 339-349.	3.0	18
98	Dimers of Anthrathiophene and Anthradithiophene Derivatives: Synthesis and Characterization. Organic Letters, 2011, 13, 548-551.	4.6	17
99	Synthesis and Characterization of Isomerically Pure anti- and syn-Anthradiindole Derivatives. Organic Letters, 2013, 15, 302-305.	4.6	17
100	Directional crystallization of C8-BTBT-C8 thin films in a temperature gradient. Materials Chemistry Frontiers, 2021, 5, 249-258.	5.9	17
101	High-Performance Humidity Sensing in π-Conjugated Molecular Assemblies through the Engineering of Electron/Proton Transport and Device Interfaces. Journal of the American Chemical Society, 2022, 144, 2546-2555.	13.7	17
102	Charge recombination in distributed heterostructures of semiconductor discotic and polymeric materials Journal of Applied Physics, 2008, 103, 124510.	2.5	16
103	Synthesis of soluble oligothiophenes bearing cyano groups, their optical and electrochemical properties. Tetrahedron, 2010, 66, 9560-9572.	1.9	16
104	Atmospheric pressure dielectric barrier discharge synthesis of morphology-controllable TiO2 films with enhanced photocatalytic activity. Thin Solid Films, 2018, 664, 90-99.	1.8	16
105	Hexaazatriisothianaphthenes: new electron-transport mesogens?. Tetrahedron, 2004, 60, 3283-3291.	1.9	15
106	Emission properties of a highly fluorescent pyrene dye in solution and in the liquid state. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178, 251-257.	3.9	14
107	High Mobility in Solutionâ€Processed 2,7â€Dialkylâ€[1]benzothieno[3,2â€ <i>b</i>][1]benzothiopheneâ€Based Fieldâ€Effect Transistors Prepared with a Simplified Deposition Method. ChemPlusChem, 2014, 79, 371-374.	2.8	14
108	Thermal conductivity of benzothieno-benzothiophene derivatives at the nanoscale. Nanoscale, 2021, 13, 3800-3807.	5.6	12

#	Article	IF	CITATIONS
109	Femtosecond Charge Transfer in Assemblies of Discotic Liquid Crystals. Journal of Physical Chemistry C, 2008, 112, 15784-15790.	3.1	11
110	Effects of temperature on the polymorphism of \hat{l}_{\pm} , $\hat{l}_{$	1.5	11
111	Band Transport and Trapping in Didodecyl[1]benzothieno[3,2- <i>b</i>][1]benzothiophene Probed by Terahertz Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 5444-5449.	4.6	11
112	Alkyl chain assisted thin film growth of 2,7-dioctyloxy-benzothienobenzothiophene. Journal of Materials Chemistry C, 2019, 7, 8477-8484.	5.5	11
113	Thermal Properties, Molecular Structure, and Thin-Film Organic Semiconductor Crystallization. Journal of Physical Chemistry C, 2020, 124, 27213-27221.	3.1	11
114	Polymorphism of terthiophene with surface confinement. IUCrJ, 2018, 5, 304-308.	2.2	11
115	From 2D to 3D: Bridging Self-Assembled Monolayers to a Substrate-Induced Polymorph in a Molecular Semiconductor. Chemistry of Materials, 2022, 34, 2238-2248.	6.7	11
116	Charge transfer complexes of a benzothienobenzothiophene derivative and their implementation as active layer in solution-processed thin film organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 7319-7328.	5.5	11
117	Quaterthiophene-based dimers containing an ethylene bridge: molecular design, synthesis, and optoelectronic properties. Tetrahedron, 2012, 68, 349-355.	1.9	10
118	[1]Benzothieno[3,2-b]benzothiophene (BTBT) derivatives: Influence in the molecular orientation and charge delocalization dynamics. Materials Chemistry and Physics, 2019, 221, 295-300.	4.0	10
119	Mesomorphism of dialkylterthiophene homologues. Synthetic Metals, 2009, 159, 1319-1324.	3.9	9
120	Substrate-induced phases: transition from a liquid-crystalline to a plastic crystalline phase via nucleation initiated by the substrate. Liquid Crystals, 2014, 41, 302-309.	2.2	9
121	Organized photochromic azo-polymeric structures: self-assembled and Langmuirâ€"Blodgettâ€"Kuhn layers. Synthetic Metals, 1996, 81, 281-285.	3.9	8
122	Impact of Silicone-Based Block Copolymer Surfactants on the Surface and Bulk Microscopic Organization of a Biodegradable Polymer, Poly(ε-caprolactone). Biomacromolecules, 2003, 4, 696-703.	5.4	8
123	The Influence of Alkoxy Substitutions on the Properties of Diketopyrrolopyrrole-Phenyl Copolymers for Solar Cells. Materials, 2013, 6, 3022-3034.	2.9	8
124	Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage. Nanoscale, 2016, 8, 5968-5976.	5.6	8
125	Substrateâ€Induced Phase of a Benzothiophene Derivative Detected by Midâ€Infrared and Lattice Phonon Raman Spectroscopy. ChemPhysChem, 2018, 19, 993-1000.	2.1	8
126	Accessing Phase-Pure and Stable Acetaminophen Polymorphs by Thermal Gradient Crystallization. Crystal Growth and Design, 2018, 18, 1272-1277.	3.0	8

#	Article	IF	Citations
127	Deracemization in a Complex Quaternary System with a Secondâ€Order Asymmetric Transformation by Using Phase Diagram Studies. Chemistry - A European Journal, 2019, 25, 13890-13898.	3.3	8
128	Directional Crystallization from the Melt of an Organic p-Type and n-Type Semiconductor Blend. Crystal Growth and Design, 2021, 21, 5231-5239.	3.0	8
129	STM Investigation of Alkylated Thiotriphenylene Monolayers at the Solid–Liquid Interface: Structure and Dynamics. Australian Journal of Chemistry, 2006, 59, 376.	0.9	7
130	Donor/acceptor-substituted anthradithiophene materials: synthesis, optical and electrochemical properties. Tetrahedron, 2011, 67, 7156-7161.	1.9	7
131	Self-Assembly of Alkyl-Substituted Oligothiophenes on MoS2: A Joint Experimental/Theoretical Study. Journal of Physical Chemistry C, 2013, 117, 21743-21751.	3.1	7
132	Investigation of the Q _{<i>x</i>} –Q _{<i>y</i>} Equilibrium in a Metalâ€Free Phthalocyanine. ChemPhysChem, 2015, 16, 3992-3996.	2.1	7
133	Crystal Growth Alignment of \hat{l}^2 -Polymorph of Resorcinol in Thermal Gradient. Crystal Growth and Design, 2018, 18, 2681-2689.	3.0	7
134	Effect of the Organic Semiconductor Side Groups on the Structural and Electronic Properties of Their Interface with Dopants. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57578-57586.	8.0	7
135	Insight from electron density and energy framework analysis on the structural features of F $<$ sub $<$ ci $>xi>sub>-TCNQ (<i>xi>=0, 2, 4) family of molecules. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 71-78.$	1.1	7
136	Doping and photo-induced current in discotic liquid crystals thin films: Long-time and temperature effects. Organic Electronics, 2011, 12, 851-856.	2.6	6
137	Oxacycleâ€Fused [1]Benzothieno[3,2â€∢i>b⟨/i>][1]benzothiophene Derivatives: Synthesis, Electronic Structure, Electrochemical Properties, Ionisation Potential, and Crystal Structure. ChemPlusChem, 2019, 84, 1263-1269.	2.8	6
138	Discovering Crystal Forms of the Novel Molecular Semiconductor OEG-BTBT. Crystal Growth and Design, 2022, 22, 1680-1690.	3.0	6
139	Dinaphthotetrathienoacenes: Synthesis, Characterization, and Applications in Organic Fieldâ€Effect Transistors. Advanced Science, 2022, 9, e2105674.	11,2	6
140	Phase Transition toward a Thermodynamically Less Stable Phase: Cross-Nucleation due to Thin Film Growth of a Benzothieno-benzothiophene Derivative. Journal of Physical Chemistry C, 2021, 125, 28039-28047.	3.1	6
141	Terthiophene Functionalized Conjugated Triarm Polymers Containing Poly(fluorene-2,7-vinylene) Arms Having Different Cores—Synthesis and Their Unique Optical Properties. ACS Omega, 2018, 3, 5052-5063.	3.5	5
142	Structural Evolution of an Organic Semiconducting Molecule onto a Soft Substrate. ChemPhysChem, 2016, 17, 1174-1179.	2.1	4
143	Stabilization of the Metastable Form I of Piracetam by Crystallization on Silicon Oxide Surfaces. Crystal Growth and Design, 2018, 18, 4123-4129.	3.0	4
144	Exhaustive Oneâ€Step Bridgehead Methylation of Adamantane Derivatives with Tetramethylsilane. European Journal of Organic Chemistry, 2021, 2021, 5227-5237.	2.4	4

#	Article	IF	CITATIONS
145	Chemical Modifications Suppress Anharmonic Effects in the Lattice Dynamics of Organic Semiconductors. ACS Materials Au, 0, , .	6.0	4
146	Anthradithiophene Derivatives Substituted at the 2,8â€Positions by Formyl and Triphenylamine Units: Synthesis, Optical, and Electrochemical Properties. European Journal of Organic Chemistry, 2011, 2011, 3131-3136.	2.4	3
147	Self-assembled π-conjugated organic nanoplates: from hexagonal to triangular motifs. RSC Advances, 2016, 6, 44921-44931.	3.6	3
148	1D-Confinement Inhibits the Anomaly in Secondary Relaxation of a Fluorinated Polymer. ACS Macro Letters, 2021, 10, 649-653.	4.8	3
149	Memory Effect and Crystallization of (<i>R</i> , <i>S</i>)-2-Chloromandelic Acid Glass. Journal of Physical Chemistry B, 2021, 125, 13339-13347.	2.6	3
150	Engineering of a kinetically driven phase of phenoxazine by surface crystallisation. CrystEngComm, 2022, 24, 4921-4931.	2.6	3
151	Bridged 3,3″′-didodecylquaterthiophene-based dimers: design, synthesis, and optoelectronic properties. Tetrahedron, 2012, 68, 5599-5605.	1.9	2
152	Ï€â€Conjugated Organosilica Semiconductors: Toward Robust Organic Electronics. Advanced Electronic Materials, 2017, 3, 1700218.	5.1	2
153	Deracemization in a Complex Quaternary System with a Secondâ€Order Asymmetric Transformation by Using Phase Diagram Studies. Chemistry - A European Journal, 2019, 25, 13837-13837.	3.3	2
154	Molecular Packing of Phenoxazine: A Combined Single-Crystal/Crystal Structure Prediction Study. Crystal Growth and Design, 0, , .	3.0	1
155	Synthesis and Structural Properties of Adamantaneâ€Substituted Amines and Amides Containing an Additional Adamantane, Azaadamantane or Diamantane Moiety. ChemistryOpen, 2022, 11, e202200031.	1.9	1

Charge Carrier Mobility: Unraveling Unprecedented Charge Carrier Mobility through Structure
Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene (Adv.) Tj ETQq0 0 0 rgBt/Overlock 10 Tf 5