
Jonas Demeulemeester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3669401/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biallelic mutations in cancer genomes reveal local mutational determinants. Nature Genetics, 2022, 54, 128-133.	21.4	16
2	Primary mediastinal large Bâ€cell lymphoma is characterized by largeâ€scale copyâ€neutral loss of heterozygosity. Genes Chromosomes and Cancer, 2022, 61, 603-615.	2.8	2
3	A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. Nature Cancer, 2022, 3, 696-709.	13.2	39
4	Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression. Nature Biotechnology, 2022, 40, 1624-1633.	17.5	31
5	Transcriptional Profiling of STAT1 Gain-of-Function Reveals Common and Mutation-Specific Fingerprints. Frontiers in Immunology, 2021, 12, 632997.	4.8	15
6	Interpretation of allele-specific chromatin accessibility using cell state–aware deep learning. Genome Research, 2021, 31, 1082-1096.	5.5	34
7	Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell, 2021, 184, 2239-2254.e39.	28.9	260
8	A pan-cancer landscape of somatic mutations in non-unique regions of the human genome. Nature Biotechnology, 2021, 39, 1589-1596.	17.5	6
9	Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell, 2021, 39, 1135-1149.e8.	16.8	83
10	Using DNA sequencing data to quantify T cell fraction and therapy response. Nature, 2021, 597, 555-560.	27.8	36
11	A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science, 2021, 374, 1113-1121.	12.6	34
12	Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture. Nature Communications, 2021, 12, 6910.	12.8	27
13	Analysis of long and short enhancers in melanoma cell states. ELife, 2021, 10, .	6.0	18
14	Drivers underpinning the malignant transformation of giant cell tumour of bone. Journal of Pathology, 2020, 252, 433-440.	4.5	21
15	Pervasive chromosomal instability and karyotype order in tumour evolution. Nature, 2020, 587, 126-132.	27.8	221
16	1228P Integrated analysis of gene expression and chromosomal aberrations to determine the global patterns of DNA methylation heterogeneity in the TRACERx lung study. Annals of Oncology, 2020, 31, S799.	1.2	0
17	Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig. Nature Communications, 2020, 11, 731.	12.8	36
18	Inferring structural variant cancer cell fraction. Nature Communications, 2020, 11, 730.	12.8	33

#	Article	lF	CITATIONS
19	The evolutionary history of 2,658 cancers. Nature, 2020, 578, 122-128.	27.8	690
20	Pan-cancer analysis of whole genomes. Nature, 2020, 578, 82-93.	27.8	1,966
21	Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nature Genetics, 2020, 52, 306-319.	21.4	275
22	Butler enables rapid cloud-based analysis of thousands of human genomes. Nature Biotechnology, 2020, 38, 288-292.	17.5	11
23	Neoantigen-directed immune escape in lung cancer evolution. Nature, 2019, 567, 479-485.	27.8	639
24	LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis. Blood, 2018, 131, blood-2017-05-786962.	1.4	32
25	Inhibitors of the integrase–transportin-SR2 interaction block HIV nuclear import. Retrovirology, 2018, 15, 5.	2.0	14
26	Neutral tumor evolution?. Nature Genetics, 2018, 50, 1630-1633.	21.4	59
27	Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nature Communications, 2018, 9, 2150.	12.8	106
28	Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7053-E7062.	7.1	27
29	Abstract 3000: Pervasive intra-tumour heterogeneity and subclonal selection across cancer types. , 2018, , .		8
30	Abstract 218: The evolutionary history of 2,658 cancers. , 2018, , .		0
31	Engineering Next-Generation BET-Independent MLV Vectors for Safer Gene Therapy. Molecular Therapy - Nucleic Acids, 2017, 7, 231-245.	5.1	19
32	Pan-cancer analysis of homozygous deletions in primary tumours uncovers rare tumour suppressors. Nature Communications, 2017, 8, 1221.	12.8	75
33	Abstract 3049: Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing. , 2017, , .		0
34	Towards a Safer, More Randomized Lentiviral Vector Integration Profile Exploring Artificial LEDGF Chimeras. PLoS ONE, 2016, 11, e0164167.	2.5	24
35	Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing. Genome Biology, 2016, 17, 250.	8.8	68
36	LEDGIN-mediated Inhibition of Integrase–LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV. EBioMedicine, 2016, 8, 248-264.	6.1	90

#	Article	IF	CITATIONS
37	Validation of the MLL-LEDGF/P75 interaction as a therapeutic target for mixed lineage leukemia. Experimental Hematology, 2016, 44, S69.	0.4	0
38	Retroviral integration: Site matters. BioEssays, 2015, 37, 1202-1214.	2.5	61
39	HIV-1 IN/Pol recruits LEDGF/p75 into viral particles. Retrovirology, 2015, 12, 16.	2.0	19
40	Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nature Communications, 2015, 6, 7968.	12.8	53
41	The HIV-1 Integrase Mutant R263A/K264A Is 2-fold Defective for TRN-SR2 Binding and Viral Nuclear Import. Journal of Biological Chemistry, 2014, 289, 25351-25361.	3.4	28
42	LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 – 2014). Expert Opinion on Therapeutic Patents, 2014, 24, 609-632.	5.0	61
43	Validation and Structural Characterization of the LEDGF/p75–MLL Interface as a New Target for the Treatment of MLL-Dependent Leukemia. Cancer Research, 2014, 74, 5139-5151.	0.9	41
44	Structure of transportin SR2, a karyopherin involved in human disease, in complex with Ran. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 723-729.	0.8	11
45	HIV-1 Integrase Variants Retarget Viral Integration and Are Associated with Disease Progression in a Chronic Infection Cohort. Cell Host and Microbe, 2014, 16, 651-662.	11.0	44
46	BET-independent MLV-based Vectors Target Away From Promoters and Regulatory Elements. Molecular Therapy - Nucleic Acids, 2014, 3, e179.	5.1	43
47	Structure, mechanics, and binding mode heterogeneity of LEDGF/p75–DNA nucleoprotein complexes revealed by scanning force microscopy. Nanoscale, 2014, 6, 4611-4619.	5.6	24
48	Validation of host factors of HIV integration as novel drug targets for anti-HIV therapy. MedChemComm, 2014, 5, 314-320.	3.4	4
49	HIV Virions as Nanoscopic Test Tubes for Probing Oligomerization of the Integrase Enzyme. ACS Nano, 2014, 8, 3531-3545.	14.6	11
50	Probing Protein-Protein Interactions in a Single Virus: Application to HIV Integrase Oligomerization. Biophysical Journal, 2014, 106, 61a.	0.5	0
51	LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology, 2013, 10, 57.	2.0	127
52	Bromodomain and extra-terminal (BET) proteins target Moloney murine leukemia virus integration to transcription start sites. Retrovirology, 2013, 10, .	2.0	0
53	2-Hydroxyisoquinoline-1,3(2H, 4H)diones (HQDs), novel inhibitors of the HIV integrase catalytic activity with a high barrier to resistance. Retrovirology, 2013, 10, .	2.0	0
54	HIV-1 Integrase Drug Discovery Comes of Age. Topics in Medicinal Chemistry, 2013, , 1-52.	0.8	4

4

JONAS DEMEULEMEESTER

#	Article	IF	CITATIONS
55	Rational design of LEDGINs as first allosteric integrase inhibitors for the treatment of HIV infection. Drug Discovery Today: Technologies, 2013, 10, e517-e522.	4.0	7
56	2-Hydroxyisoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-diones (HIDs), Novel Inhibitors of HIV Integrase with a High Barrier to Resistance. ACS Chemical Biology, 2013, 8, 1187-1194.	3.4	25
57	The BET Family of Proteins Targets Moloney Murine Leukemia Virus Integration near Transcription Start Sites. Cell Reports, 2013, 5, 886-894.	6.4	162
58	4-Substituted 2-Hydroxyisoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-diones as a Novel Class of HIV-1 Integrase Inhibitors. ACS Medicinal Chemistry Letters, 2013, 4, 606-611.	2.8	52
59	Characterization of rare lens epithelium-derived growth factor/p75 genetic variants identified in HIV-1 long-term nonprogressors. Aids, 2013, 27, 539-543.	2.2	7
60	Interaction of Transportin-SR2 with Ras-related Nuclear Protein (Ran) GTPase. Journal of Biological Chemistry, 2013, 288, 25603-25613.	3.4	10
61	Impairing MLL-fusion gene-mediated transformation by dissecting critical interactions with the lens epithelium-derived growth factor (LEDGF/p75). Leukemia, 2013, 27, 1245-1253.	7.2	45
62	LEDGF/p75-Independent HIV-1 Replication Demonstrates a Role for HRP-2 and Remains Sensitive to Inhibition by LEDGINs. PLoS Pathogens, 2012, 8, e1002558.	4.7	117
63	Identification of a Small Molecule That Modulates Platelet Glycoprotein Ib-von Willebrand Factor Interaction. Journal of Biological Chemistry, 2012, 287, 9461-9472.	3.4	13
64	Cellular Cofactors of Lentiviral Integrase: From Target Validation to Drug Discovery. Molecular Biology International, 2012, 2012, 1-16.	1.7	26
65	Small-Molecule Inhibitors of the LEDGF/p75 Binding Site of Integrase Block HIV Replication and Modulate Integrase Multimerization. Antimicrobial Agents and Chemotherapy, 2012, 56, 4365-4374.	3.2	158
66	Identification of Residues in the C-terminal Domain of HIV-1 Integrase That Mediate Binding to the Transportin-SR2 Protein. Journal of Biological Chemistry, 2012, 287, 34059-34068.	3.4	26
67	Fueling HIV-1 integrase drug design with structural insights. Drug Discovery Today: Technologies, 2012, 9, e205-e212.	4.0	6
68	Development of an AlphaScreen-Based HIV-1 Integrase Dimerization Assay for Discovery of Novel Allosteric Inhibitors. Journal of Biomolecular Screening, 2012, 17, 618-628.	2.6	36
69	Discovery of small molecule HIV-1 integrase dimerization inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3109-3114.	2.2	28
70	A Symmetric Region of the HIV-1 Integrase Dimerization Interface Is Essential for Viral Replication. PLoS ONE, 2012, 7, e45177.	2.5	10
71	Interplay between HIV Entry and Transportin-SR2 Dependency. Retrovirology, 2011, 8, 7.	2.0	51
72	Unraveling the Role of Peptidyl-Prolyl Isomerases in Neurodegeneration. Molecular Neurobiology, 2011, 44, 13-27.	4.0	37