David Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3669183/publications.pdf

Version: 2024-02-01

304743 361022 1,717 36 22 35 citations h-index g-index papers 38 38 38 1612 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Monitoring Apricot (Prunus armeniaca L.) Ripening Progression through Candidate Gene Expression Analysis. International Journal of Molecular Sciences, 2022, 23, 4575.	4.1	4
2	Reducing the uncertainty on chilling requirements for endodormancy breaking of temperate fruits by data-based parameter estimation of the dynamic model: a test case in apricot. Tree Physiology, 2021, 41, 644-656.	3.1	15
3	Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective. International Journal of Molecular Sciences, 2021, 22, 333.	4.1	40
4	Identification of loci controlling phenology, fruit quality and post-harvest quantitative parameters in Japanese plum (Prunus salicina Lindl.). Postharvest Biology and Technology, 2020, 169, 111292.	6.0	14
5	Analysis of Metabolites and Gene Expression Changes Relative to Apricot (Prunus armeniaca L.) Fruit Quality During Development and Ripening. Frontiers in Plant Science, 2020, 11, 1269.	3.6	36
6	Identification of quantitative trait loci (QTLs) linked to Apple chlorotic leaf spot virus (ACLSV) resistance in apricot. Euphytica, 2019, 215, 1 .	1.2	2
7	Phenotypical characterization and molecular fingerprinting of natural early-flowering mutants in apricot (Prunus armeniaca L.) and Japanese plum (P. salicina Lindl.). Scientia Horticulturae, 2019, 254, 187-192.	3.6	13
8	Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR. Molecular Breeding, 2019, 39, 1.	2.1	43
9	Development and applicability of GBS approach for genomic studies in Japanese plum (<i>Prunus) Tj ETQq1 1 0.78</i>	34314 rgB	T _/ Overlock
10	Comparative Analysis of SSR Markers Developed in Exon, Intron, and Intergenic Regions and Distributed in Regions Controlling Fruit Quality Traits in Prunus Species: Genetic Diversity and Association Studies. Plant Molecular Biology Reporter, 2018, 36, 23-35.	1.8	37
11	â€~Cebasred' and â€~Primorosa' Apricots: Two New Self-compatible, Plum pox virus (Sharka)–resistant, a Very Early Ripening Cultivars for the Fresh Market. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1919-1921.	and 1.0	4
12	Chilling and heat requirements of Japanese plum cultivars for flowering. Scientia Horticulturae, 2018, 242, 164-169.	3.6	33
13	Genotyping by Sequencing for SNP-Based Linkage Analysis and Identification of QTLs Linked to Fruit Quality Traits in Japanese Plum (Prunus salicina Lindl.). Frontiers in Plant Science, 2017, 8, 476.	3.6	74
14	Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genetics and Genomes, 2016, 12, 1.	1.6	33
15	Quantitative trait loci (QTLs) identification and the transmission of resistance to powdery mildew in apricot. Euphytica, 2016, 211, 245-254.	1.2	3
16	Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm. Spanish Journal of Agricultural Research, 2016, 14, e0706.	0.6	10
17	SNP development for genetic diversity analysis in apricot. Tree Genetics and Genomes, 2015, 11, 1.	1.6	21
18	Opportunities of marker-assisted selection for Plum pox virus resistance in apricot breeding programs. Tree Genetics and Genomes, 2014, 10, 513-525.	1.6	30

#	Article	IF	Citations
19	Understanding dormancy release in apricot flower buds (Prunus armeniaca L.) using several process-based phenological models. Agricultural and Forest Meteorology, 2014, 184, 210-219.	4.8	39
20	Quantitative Trait Loci (QTL) and Mendelian Trait Loci (MTL) Analysis in Prunus: a Breeding Perspective and Beyond. Plant Molecular Biology Reporter, 2014, 32, 1-18.	1.8	82
21	Transmission of Fruit Quality Traits in Apricot (Prunus armeniaca L.) and Analysis of Linked Quantitative Trait Loci (QTLs) Using Simple Sequence Repeat (SSR) Markers. Plant Molecular Biology Reporter, 2013, 31, 1506-1517.	1.8	44
22	The relationship between xylem differentiation and dormancy evolution in apricot flower buds (Prunus armeniaca L.): the influence of environmental conditions in two Mediterranean areas. Trees - Structure and Function, 2012, 26, 919-928.	1.9	32
23	The fulfilment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: An approach in Murcia (Spain) and the Western Cape (South Africa). European Journal of Agronomy, 2012, 37, 43-55.	4.1	120
24	High temperatures and time to budbreak in low chill apricot †Palsteyn†M. Towards a better understanding of chill and heat requirements fulfilment. Scientia Horticulturae, 2011, 129, 649-655.	3.6	40
25	Inheritance of Flowering Time in Apricot (Prunus armeniaca L.) and Analysis of Linked Quantitative Trait Loci (QTLs) using Simple Sequence Repeat (SSR) Markers. Plant Molecular Biology Reporter, 2011, 29, 404-410.	1.8	72
26	Developing Microsatellite Multiplex and Megaplex PCR Systems for High-Throughput Characterization of Breeding Progenies and Linkage Maps Spanning the Apricot (Prunus armeciaca L.) Genome. Plant Molecular Biology Reporter, 2010, 28, 560-568.	1.8	20
27	†Mirlo Blanco', †Mirlo Anaranjado', and †Mirlo Rojo': Three New Very Early-season Apricots for t Fresh Market. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1893-1894.	he 1.0	15
28	Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. Food Chemistry, 2009, 113, 1323-1328.	8.2	106
29	Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chemistry, 2009, 115, 1133-1140.	8.2	154
30	Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica, 2008, 163, 143-158.	1.2	171
31	Application of Reflectance Colorimeter Measurements and Infrared Spectroscopy Methods to Rapid and Nondestructive Evaluation of Carotenoids Content in Apricot (<i>Prunus armeniaca</i> L.). Journal of Agricultural and Food Chemistry, 2008, 56, 4916-4922.	5.2	54
32	Modelling Wild-Oat Density in Terms of Soil Factors: A Machine Learning Approach. Precision Agriculture, 2005, 6, 213-228.	6.0	4
33	Carotenoids from New Apricot (Prunus armeniacaL.) Varieties and Their Relationship with Flesh and Skin Color. Journal of Agricultural and Food Chemistry, 2005, 53, 6368-6374.	5.2	161
34	Characterization and Quantitation of Phenolic Compounds in New Apricot (Prunus armeniacaL.) Varieties. Journal of Agricultural and Food Chemistry, 2005, 53, 9544-9552.	5.2	118
35	Influence of rootstock on the productive behaviour of †Orange Red†apricot under Mediterranean conditions. Fruits, 2004, 59, 367-373.	0.4	38
36	Agroclimatic Metrics for the Main Stone Fruit Producing Areas in Spain in Current and Future Climate Change Scenarios: Implications From an Adaptive Point of View. Frontiers in Plant Science, 0, 13, .	3.6	6