Eleonora Cimini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668828/publications.pdf

Version: 2024-02-01

56 papers

1,560 citations

20 h-index 36 g-index

56 all docs 56
docs citations

56 times ranked 2976 citing authors

#	Article	IF	CITATIONS
1	Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19). Cell Death and Differentiation, 2020, 27, 3196-3207.	11.2	196
2	Unique human immune signature of Ebola virus disease in Guinea. Nature, 2016, 533, 100-104.	27.8	170
3	Different Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases. Frontiers in Immunology, 2020, 11, 610300.	4.8	149
4	Early expansion of myeloid-derived suppressor cells inhibits SARS-CoV-2 specific T-cell response and may predict fatal COVID-19 outcome. Cell Death and Disease, 2020, 11, 921.	6.3	96
5	An Inflammatory Profile Correlates With Decreased Frequency of Cytotoxic Cells in Coronavirus Disease 2019. Clinical Infectious Diseases, 2020, 71, 2272-2275.	5.8	91
6	Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection. Cell Death and Disease, 2016, 7, e2164-e2164.	6.3	51
7	Association of Profoundly Impaired Immune Competence in H1N1vâ€Infected Patients with a Severe or Fatal Clinical Course. Journal of Infectious Diseases, 2010, 202, 681-689.	4.0	50
8	In HIV-positive patients, myeloid-derived suppressor cells induce T-cell anergy by suppressing CD3ζ expression through ELF-1 inhibition. Aids, 2015, 29, 2397-2407.	2.2	48
9	Different features of \hat{V} 2 T and NK cells in fatal and non-fatal human Ebola infections. PLoS Neglected Tropical Diseases, 2017, 11, e0005645.	3.0	46
10	Innate gamma/delta T-cells during HIV infection: Terra relatively Incognita in novel vaccination strategies?. AIDS Reviews, 2011, 13, 3-12.	1.0	42
11	COVIDâ€19 in people living with HIV: Clinical implications of dynamics of the immune response to SARSâ€CoVâ€2. Journal of Medical Virology, 2021, 93, 1796-1804.	5.0	38
12	The unbalanced p53/SIRT1 axis may impact lymphocyte homeostasis in COVID-19 patients. International Journal of Infectious Diseases, 2021, 105, 49-53.	3.3	38
13	Activated VÎ ³ 9VÎ ² T Cells Trigger Granulocyte Functions via MCP-2 Release. Journal of Immunology, 2009, 182, 522-529.	0.8	35
14	Human Zika infection induces a reduction of IFN- \hat{l}^3 producing CD4 T-cells and a parallel expansion of effector \hat{Vl} 2 T-cells. Scientific Reports, 2017, 7, 6313.	3.3	35
15	Hepatitis C virus directâ€acting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver International, 2018, 38, 1741-1750.	3.9	35
16	Myeloid-Derived Suppressor Cells Specifically Suppress IFN-Î ³ Production and Antitumor Cytotoxic Activity of VÎ ² T Cells. Frontiers in Immunology, 2018, 9, 1271.	4.8	35
17	Multicompartment vectors as novel drug delivery systems: selective activation of $T\hat{I}^3\hat{I}'$ lymphocytes after zoledronic acid delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 153-161.	3.3	28
18	Zoledronic Acid Enhances Vδ2 T-Lymphocyte Antitumor Response to Human Glioma Cell Lines. International Journal of Immunopathology and Pharmacology, 2011, 24, 139-148.	2.1	25

#	Article	IF	Citations
19	Granulocytic Myeloid–Derived Suppressor Cells Increased in Early Phases of Primary HIV Infection Depending on TRAIL Plasma Level. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 74, 575-582.	2.1	25
20	Interferon-α Improves Phosphoantigen-Induced Vγ9Vδ2 T-Cells Interferon-γ Production during Chronic HCV Infection. PLoS ONE, 2012, 7, e37014.	2.5	23
21	In HIV/HCV co-infected patients T regulatory and myeloid-derived suppressor cells persist after successful treatment with directly acting antivirals. Journal of Hepatology, 2017, 67, 422-424.	3.7	20
22	GRAd-COV2, a gorilla adenovirus-based candidate vaccine against COVID-19, is safe and immunogenic in younger and older adults. Science Translational Medicine, 2022, 14, eabj1996.	12.4	18
23	Strong immunogenicity of heterologous prime-boost immunizations with the experimental vaccine GRAd-COV2 and BNT162b2 or ChAdOx1-nCOV19. Npj Vaccines, 2021, 6, 131.	6.0	18
24	Primary and Chronic HIV Infection Differently Modulates Mucosal \hat{V} 1 and \hat{V} 2 T-Cells Differentiation Profile and Effector Functions. PLoS ONE, 2015, 10, e0129771.	2.5	17
25	Bone Marrow CD34 ⁺ Progenitor Cells from HIV-Infected Patients Show an Impaired T Cell Differentiation Potential Related to Proinflammatory Cytokines. AIDS Research and Human Retroviruses, 2017, 33, 590-596.	1.1	17
26	Virological Characterization of the First 2 COVID-19 Patients Diagnosed in Italy: Phylogenetic Analysis, Virus Shedding Profile From Different Body Sites, and Antibody Response Kinetics. Open Forum Infectious Diseases, 2020, 7, ofaa403.	0.9	17
27	Myeloid Derived Suppressor Cells Expansion Persists After Early ART and May Affect CD4 T Cell Recovery. Frontiers in Immunology, 2019, 10, 1886.	4.8	15
28	Interferonâ€Î³â€"Mediated Antiviral Immunity against Orthopoxvirus Infection Is Provided by γδT Cells. Journal of Infectious Diseases, 2006, 193, 1606-1607.	4.0	13
29	Cellular and Humoral Immune Responses to Pandemic Influenza Vaccine in Healthy and in Highly Active Antiretroviral Therapy-Treated HIV Patients. AIDS Research and Human Retroviruses, 2012, 28, 1606-1616.	1.1	12
30	HIV-Specific CD8 T Cells Producing CCL-4 Are Associated With Worse Immune Reconstitution During Chronic Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 75, 338-344.	2.1	12
31	Impact of ART on dynamics of growth factors and cytokines in primary HIV infection. Cytokine, 2020, 125, 154839.	3.2	12
32	HIV Infection of Monocytes-Derived Dendritic Cells Inhibits $\hat{V^{3}9V^{2}}$ T Cells Functions. PLoS ONE, 2014, 9, e111095.	2.5	12
33	PMN-MDSC Frequency Discriminates Active Versus Latent Tuberculosis and Could Play a Role in Counteracting the Immune-Mediated Lung Damage in Active Disease. Frontiers in Immunology, 2021, 12, 594376.	4.8	11
34	$V\hat{l}^39V\hat{l}'2$ T-Cell Polyfunctionality Is Differently Modulated in HAART-Treated HIV Patients according to CD4 T-Cell Count. PLoS ONE, 2015, 10, e0132291.	2.5	10
35	VÎ 2 T-Cells Kill ZIKV-Infected Cells by NKG2D-Mediated Cytotoxicity. Microorganisms, 2019, 7, 350.	3.6	9
36	CD3ζ Downâ€Modulation May Explain Vγ9VÎ′2 T Lymphocyte Anergy in HIVâ€Infected Patients. Journal of Infectious Diseases, 2009, 199, 432-436.	4.0	8

#	Article	IF	Citations
37	<i>In Vivo</i> Interferon-Alpha/Ribavirin Treatment Modulates Vγ9Vδ2 T-Cell Function During Chronic HCV Infection. Journal of Interferon and Cytokine Research, 2013, 33, 136-141.	1.2	8
38	IL-18 and Stem Cell Factor affect hematopoietic progenitor cells in HIV-infected patients treated during primary HIV infection. Cytokine, 2018, 103, 34-37.	3.2	8
39	Intrahepatic VÎ ³ 9VÎ ² T-cells from HCV-infected patients show an exhausted phenotype but can inhibit HCV replication. Virus Research, 2018, 243, 31-35.	2.2	8
40	Low-density lipoprotein and ritonavir: an interaction between antiretrovirals and lipids mediated by P-glycoprotein. Journal of Antimicrobial Chemotherapy, 2014, 69, 1760-1766.	3.0	7
41	A new procedure to analyze polymorphonuclear myeloid derived suppressor cells in cryopreserved samples cells by flow cytometry. PLoS ONE, 2018, 13, e0202920.	2.5	7
42	Early ART in primary HIV infection may also preserve lymphopoiesis capability in circulating haematopoietic progenitor cells: a case report. Journal of Antimicrobial Chemotherapy, 2015, 70, 1598-1600.	3.0	6
43	In Human Immunodeficiency Virus primary infection, early combined antiretroviral therapy reduced <i>î³Î′</i> Tâ€cell activation but failed to restore their polyfunctionality. Immunology, 2019, 157, 322-330.	4.4	6
44	In Acute Dengue Infection, High TIM-3 Expression May Contribute to the Impairment of IFN \hat{I}^3 Production by Circulating VÎ \hat{I}^3 T Cells. Viruses, 2022, 14, 130.	3.3	6
45	Cellular and Humoral Cross-Immunity against Two H3N2v Influenza Strains in Presumably Unexposed Healthy and HIV-Infected Subjects. PLoS ONE, 2014, 9, e105651.	2.5	5
46	Antiviral activity of human \hat{V} 2 T-cells against WNV includes both cytolytic and non-cytolytic mechanisms. New Microbiologica, 2016, 39, 139-42.	0.1	5
47	Short Communication: The 2005 Italian Quality Control Study for the Evaluation of CD4 Cells in Centers Involved in the Treatment of HIV Type 1 Patients. AIDS Research and Human Retroviruses, 2007, 23, 777-781.	1.1	3
48	The Different Roles of Interleukin 7 and Interleukin 18 in Affecting Lymphoid Hematopoietic Progenitor Cells and CD4 Homeostasis in Naive Primary and Chronic HIV-Infected Patients. Clinical Infectious Diseases, 2016, 63, 1683-1684.	5.8	3
49	Use of Pembrolizumab for Treatment of Progressive Multifocal Leukoencephalopathy in People Living with HIV. Viruses, 2022, 14, 970.	3.3	3
50	î³î´T Cells in Emerging Viral Infection: An Overview. Viruses, 2022, 14, 1166.	3.3	3
51	Persistent gamma delta Tâ€cell dysfunction in HCV/HIV coâ€infection despite directâ€acting antiviral therapyâ€induced cure. Journal of Viral Hepatitis, 2020, 27, 754-756.	2.0	2
52	Rapid and preemptive evaluation of individual anti-hepatitis C virus treatment outcome capability by a short-term autologous liver tissue culture system. New Microbiologica, 2014, 37, 363-7.	0.1	2
53	Rescue of Replication-Competent ZIKV Hidden in Placenta-Derived Mesenchymal Cells Long After the Resolution of the Infection. Open Forum Infectious Diseases, 2019, 6, ofz342.	0.9	1
54	Dendritic cells activation is associated with sustained virological response to telaprevir treatment of HCV-infected patients. Clinical Immunology, 2017, 183, 82-90.	3.2	0

#	Article	IF	CITATIONS
55	GB virus type C crossâ€reactivity in clinical samples with a low hepatitis C virus antibody positive response. Apmis, 2019, 127, 109-111.	2.0	o
56	JCV-specific T-cells producing IFN-gamma are differently associated with PmL occurrence in HIV patients and liver transplant recipients. New Microbiologica, 2015, 38, 85-9.	0.1	0