
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developmental Control of Nuclear Size and Shape by kugelkern and kurzkern. Current Biology, 2006, 16, 543-552.	3.9	109
2	Interlocked Feedforward Loops Control Cell-Type-Specific Rhodopsin Expression in the Drosophila Eye. Cell, 2011, 145, 956-968.	28.9	78
3	The Î ³ TuRC components Grip75 and Grip128 have an essential microtubule-anchoring function in the Drosophila germline. Development (Cambridge), 2006, 133, 3963-3972.	2.5	57
4	Number of Nuclear Divisions in the Drosophila Blastoderm Controlled by Onset of Zygotic Transcription. Current Biology, 2013, 23, 133-138.	3.9	50
5	Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors. Nature, 2011, 479, 108-112.	27.8	48
6	Assembloids. Nature Methods, 2021, 18, 27-27.	19.0	43
7	Machine learning in neuroscience. Nature Methods, 2018, 15, 33-33.	19.0	26
8	The conserved kinase SRPK regulates karyosome formation and spindle microtubule assembly in <i>Drosophila</i> oocytes. Journal of Cell Science, 2012, 125, 4457-62.	2.0	25
9	Voltage sensors: challenging, but with potential. Nature Methods, 2015, 12, 921-924.	19.0	21
10	The glucosyltransferase Xiantuan of the endoplasmic reticulum specifically affects E-Cadherin expression and is required for gastrulation movements in Drosophila. Developmental Biology, 2014, 390, 208-220.	2.0	15
11	Faster brain imaging. Nature Methods, 2017, 14, 34-34.	19.0	15
12	Sensing neurotransmitters. Nature Methods, 2019, 16, 17-17.	19.0	14
13	The First Steps in Drosophila Motion Detection. Neuron, 2007, 56, 5-7.	8.1	8
14	Atomic force microscopy in super-resolution. Nature Methods, 2021, 18, 859-859.	19.0	7
15	A windowless peek into the brain. Nature Methods, 2014, 11, 988-988.	19.0	6
16	fMRI goes individual. Nature Methods, 2015, 12, 1112-1112.	19.0	6
17	Automated behavioral analysis. Nature Methods, 2021, 18, 29-29.	19.0	6
18	Transparency in large tissue samples. Nature Methods, 2015, 12, 11-11.	19.0	5

#	Article	IF	CITATIONS
19	All-optical electrophysiology in behaving animals. Nature Methods, 2015, 12, 101-101.	19.0	5
20	Transformative electrophysiology. Nature Methods, 2018, 15, 31-31.	19.0	4
21	Detecting acetylcholine. Nature Methods, 2018, 15, 648-648.	19.0	4
22	High-resolution optical tweezers. Nature Methods, 2021, 18, 333-333.	19.0	4
23	A brain observatory. Nature Methods, 2020, 17, 129-129.	19.0	4
24	Algae are the best engineers of optogenetic inhibitors. Nature Methods, 2015, 12, 806-807.	19.0	3
25	Raising the game in image classification. Nature Methods, 2018, 15, 759-759.	19.0	3
26	Massively parallel intracellular recordings. Nature Methods, 2019, 16, 1079-1079.	19.0	3
27	A bright future for voltage imaging. Nature Methods, 2019, 16, 1076-1076.	19.0	3
28	Organoids that model the fetal placenta. Nature Methods, 2019, 16, 144-144.	19.0	3
29	Potent chemogenetics. Nature Methods, 2019, 16, 363-363.	19.0	3
30	Super-resolution Raman imaging. Nature Methods, 2019, 16, 1202-1202.	19.0	3
31	Putting on the squeeze. Nature Methods, 2020, 17, 24-24.	19.0	3
32	A detailed marmoset brain atlas. Nature Methods, 2020, 17, 251-251.	19.0	3
33	Human embryogenesis in a dish. Nature Methods, 2020, 17, 125-125.	19.0	3
34	Flipping the Light Switch. Science, 2010, 330, 454-455.	12.6	2
35	Customizing cell-cell communication. Nature Methods, 2016, 13, 285-285.	19.0	2
36	Precision optogenetics. Nature Methods, 2016, 13, 34-34.	19.0	2

#	Article	IF	CITATIONS
37	Correlating behavior and neural activity at high resolution. Nature Methods, 2018, 15, 479-479.	19.0	2
38	Simulating the imaging process in scattering tissue. Nature Methods, 2018, 15, 406-406.	19.0	2
39	Optogenetics turns up the heat. Nature Methods, 2019, 16, 681-681.	19.0	2
40	Voltage imaging in vivo. Nature Methods, 2019, 16, 573-573.	19.0	2
41	Optogenetic inhibition. Nature Methods, 2020, 17, 29-29.	19.0	2
42	Collaborative neuroscience. Nature Methods, 2020, 17, 22-22.	19.0	2
43	X-ray connectomics. Nature Methods, 2020, 17, 1072-1072.	19.0	2
44	Mapping spatial diversity. Nature Methods, 2020, 17, 461-461.	19.0	2
45	The mouse reference brain in 3D. Nature Methods, 2020, 17, 655-655.	19.0	2
46	Super-resolution 3D live cell imaging. Nature Methods, 2021, 18, 232-232.	19.0	2
47	Light microscopy with lattices. Nature Methods, 2014, 11, 1191-1191.	19.0	1
48	Pressuring neurons into action. Nature Methods, 2015, 12, 1008-1008.	19.0	1
49	Taking a stab at neuronal heterogeneity. Nature Methods, 2016, 13, 114-114.	19.0	1
50	Monitoring 3D neural activity at large scale. Nature Methods, 2016, 13, 195-195.	19.0	1
51	Non-invasive and fast control of neural activity. Nature Methods, 2019, 16, 954-954.	19.0	1
52	Neuron segmentation with deep learning. Nature Methods, 2019, 16, 460-460.	19.0	1
53	Hybrid volumetric calcium imaging. Nature Methods, 2019, 16, 461-461.	19.0	1
54	Chromatic multiphoton imaging of the whole brain. Nature Methods, 2019, 16, 459-459.	19.0	1

#	Article	IF	CITATIONS
55	Dissecting neuronal circuitry. Nature Methods, 2019, 16, 282-282.	19.0	1
56	Imaging the mouse as a whole. Nature Methods, 2019, 16, 213-213.	19.0	1
57	Two-component optogenetic inhibition. Nature Methods, 2019, 16, 26-26.	19.0	1
58	Beware the unexpected in Cre drivers. Nature Methods, 2020, 17, 364-364.	19.0	1
59	Photoacoustics in a snap. Nature Methods, 2020, 17, 248-248.	19.0	1
60	Venomous organoids. Nature Methods, 2020, 17, 360-360.	19.0	1
61	Calcium imaging in the NIR. Nature Methods, 2021, 18, 32-32.	19.0	1
62	Real-time behavioral analysis. Nature Methods, 2021, 18, 123-123.	19.0	1
63	Studying divergence in human–chimp hybrid cells. Nature Methods, 2021, 18, 444-444.	19.0	1
64	Spike inference with CASCADE. Nature Methods, 2021, 18, 1147-1147.	19.0	1
65	Voltage sensors revisited. Nature Methods, 2014, 11, 1088-1088.	19.0	Ο
66	Etching away at the surface. Nature Methods, 2014, 11, 790-790.	19.0	0
67	Fast volumetric imaging in live samples. Nature Methods, 2015, 12, 170-170.	19.0	Ο
68	Synapses seen at different scales. Nature Methods, 2015, 12, 485-485.	19.0	0
69	Imaging at depth. Nature Methods, 2015, 12, 38-38.	19.0	Ο
70	In vivo voltage sensors. Nature Methods, 2015, 12, 36-36.	19.0	0
71	Chemogenetic manipulation of neurons. Nature Methods, 2015, 12, 603-603.	19.0	0
72	Neurons pick up the heat. Nature Methods, 2015, 12, 390-390.	19.0	0

#	Article	IF	CITATIONS
73	A snapshot of active neurons. Nature Methods, 2015, 12, 283-283.	19.0	Ο
74	A digital piece of brain. Nature Methods, 2015, 12, 905-905.	19.0	0
75	Sensing some tension. Nature Methods, 2016, 13, 17-17.	19.0	Ο
76	Modeling temperature during optogenetic illumination. Nature Methods, 2018, 15, 763-763.	19.0	0
77	Shaking up clearing cocktails. Nature Methods, 2018, 15, 859-859.	19.0	Ο
78	The whole fly brain in detail. Nature Methods, 2018, 15, 651-651.	19.0	0
79	Expansion of the transgenic toolkit in mouse. Nature Methods, 2018, 15, 651-651.	19.0	Ο
80	Analyzing Drosophila activity. Nature Methods, 2018, 15, 407-407.	19.0	0
81	Inferring neuronal activity from gene expression. Nature Methods, 2018, 15, 481-481.	19.0	Ο
82	Speedy optogenetics in red. Nature Methods, 2018, 15, 482-482.	19.0	0
83	Delighting in dopamine. Nature Methods, 2018, 15, 573-573.	19.0	Ο
84	Improving retrograde labeling of neurons. Nature Methods, 2018, 15, 571-571.	19.0	0
85	hPSCs on a diet. Nature Methods, 2019, 16, 679-679.	19.0	О
86	A deeply learned brain atlas. Nature Methods, 2019, 16, 680-680.	19.0	0
87	Zapalog: a reversible dimerizer. Nature Methods, 2019, 16, 577-577.	19.0	Ο
88	Stem cells with potential. Nature Methods, 2019, 16, 578-578.	19.0	0
89	Looking at xenografts in zebrafish. Nature Methods, 2019, 16, 578-578.	19.0	Ο
90	A large-scale, high-resolution microscope. Nature Methods, 2019, 16, 806-806.	19.0	0

#	Article	IF	CITATIONS
91	Targeting neurons synthetically. Nature Methods, 2019, 16, 805-805.	19.0	Ο
92	Looking at Hydra cells one at a time. Nature Methods, 2019, 16, 801-801.	19.0	0
93	Tracing neurons made easy. Nature Methods, 2019, 16, 957-957.	19.0	0
94	Making limb-like structures from mouse PSCs. Nature Methods, 2019, 16, 957-957.	19.0	0
95	Unbiased, whole-brain imaging of neural circuits. Nature Methods, 2019, 16, 142-142.	19.0	0
96	Large-scale electrophysiology with polymer-based electrodes. Nature Methods, 2019, 16, 143-143.	19.0	0
97	Optoacoustic imaging of neural activity. Nature Methods, 2019, 16, 362-362.	19.0	0
98	Sensing norepinephrine. Nature Methods, 2019, 16, 362-362.	19.0	0
99	Mapping the marmoset brain. Nature Methods, 2019, 16, 285-285.	19.0	0
100	Multifunctional miniature microscopy. Nature Methods, 2019, 16, 218-218.	19.0	0
101	A light-dependent Flp recombinase. Nature Methods, 2019, 16, 217-217.	19.0	0
102	Detecting intracellular PPIs with CLEM. Nature Methods, 2019, 16, 1205-1205.	19.0	0
103	Pose estimation with deep learning. Nature Methods, 2019, 16, 1205-1205.	19.0	0
104	Highlighting active neurons. Nature Methods, 2019, 16, 25-25.	19.0	0
105	Primate post-implantation development in a dish. Nature Methods, 2020, 17, 29-29.	19.0	0
106	RAMPing up voltage indicator imaging. Nature Methods, 2020, 17, 25-25.	19.0	0
107	Volumetric imaging with confocal light field microscopy. Nature Methods, 2020, 17, 956-956.	19.0	0
108	Benchmarked spike sorting. Nature Methods, 2020, 17, 656-656.	19.0	0

#	Article	IF	CITATIONS
109	Electrical functional imaging. Nature Methods, 2020, 17, 1176-1176.	19.0	Ο
110	Trapping fluorescence in the soma. Nature Methods, 2020, 17, 761-761.	19.0	0
111	Connectomics in high throughput. Nature Methods, 2020, 17, 873-873.	19.0	Ο
112	A comparative atlas of the brain. Nature Methods, 2020, 17, 462-462.	19.0	0
113	Optimized tissue clearing. Nature Methods, 2020, 17, 564-564.	19.0	Ο
114	Watching embryos develop. Nature Methods, 2020, 17, 560-560.	19.0	0
115	A photoswitch for modulating neuronal activity. Nature Methods, 2020, 17, 364-364.	19.0	Ο
116	A multiplexable miniscope. Nature Methods, 2020, 17, 252-252.	19.0	0
117	lt's a material world. Nature Methods, 2020, 17, 458-458.	19.0	Ο
118	Finding exciting inputs. Nature Methods, 2020, 17, 30-30.	19.0	0
119	Cell–cell interactions revealed with RABID-seq. Nature Methods, 2021, 18, 593-593.	19.0	0
120	Optogenetic silencing at synaptic terminals. Nature Methods, 2021, 18, 712-712.	19.0	0
121	DELIVERing transgenes into muscle. Nature Methods, 2021, 18, 1275-1275.	19.0	0
122	Neuroscience goes viral. Nature Methods, 2022, 19, 28-28.	19.0	0
123	Flexibility in mesoscopic imaging. Nature Methods, 2022, 19, 32-32.	19.0	0