
Magali Remaud-Simeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3668632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homopolysaccharides from lactic acid bacteria. International Dairy Journal, 2001, 11, 675-685.	3.0	284
2	Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Research, 2010, 20, 1605-1612.	5.5	228
3	Biodiversity of Exopolysaccharides Produced from Sucrose by Sourdough Lactic Acid Bacteria. Journal of Agricultural and Food Chemistry, 2009, 57, 10889-10897.	5.2	160
4	Amylosucrase, a Glucan-synthesizing Enzyme from the α-Amylase Family. Journal of Biological Chemistry, 2001, 276, 25273-25278.	3.4	135
5	Amylosucrase fromNeisseria polysaccharea: novel catalytic properties. FEBS Letters, 2000, 471, 219-223.	2.8	133
6	Amylose Synthesized in Vitro by Amylosucrase: Morphology, Structure, and Properties. Biomacromolecules, 2005, 6, 1000-1011.	5.4	119
7	Understanding the Polymerization Mechanism of Glycoside-Hydrolase Family 70 Glucansucrases. Journal of Biological Chemistry, 2006, 281, 31254-31267.	3.4	119
8	Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Applied Microbiology and Biotechnology, 1997, 48, 465-472.	3.6	116
9	Sequence Analysis of the Gene Encoding Amylosucrase from <i>Neisseria polysaccharea</i> and Characterization of the Recombinant Enzyme. Journal of Bacteriology, 1999, 181, 375-381.	2.2	111
10	Glucansucrases: molecular engineering and oligosaccharide synthesis. Journal of Molecular Catalysis B: Enzymatic, 2000, 10, 117-128.	1.8	100
11	Molecular Basis of the Amylose-like Polymer Formation Catalyzed by Neisseria polysaccharea Amylosucrase. Journal of Biological Chemistry, 2004, 279, 726-734.	3.4	96
12	Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiology Letters, 2010, 311, 18-26.	1.8	89
13	Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Applied and Environmental Microbiology, 1997, 63, 2159-2165.	3.1	89
14	Insights into lid movements of <i>Burkholderia cepacia</i> lipase inferred from molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2009, 77, 509-523.	2.6	88
15	Molecular Characterization of DSR-E, an α-1,2 Linkage-Synthesizing Dextransucrase with Two Catalytic Domains. Journal of Bacteriology, 2002, 184, 5753-5761.	2.2	87
16	Geometric algorithms for the conformational analysis of long protein loops. Journal of Computational Chemistry, 2004, 25, 956-967.	3.3	86
17	Crystal Structures of Amylosucrase from Neisseria polysaccharea in Complex with d-Glucose and the Active Site Mutant Glu328Gln in Complex with the Natural Substrate Sucrose. Biochemistry, 2001, 40, 9032-9039.	2.5	85
18	In VitroFermentation of Linear and α-1,2-Branched Dextrans by the Human Fecal Microbiota. Applied and Environmental Microbiology, 2011, 77, 5307-5315.	3.1	84

#	Article	IF	CITATIONS
19	Oligosaccharide and Sucrose Complexes of Amylosucrase. Journal of Biological Chemistry, 2002, 277, 47741-47747.	3.4	83
20	Production and use of glucosyltransferases fromLeuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing α-(1→2) linkages. Applied Biochemistry and Biotechnology, 1994, 44, 101-117.	2.9	82
21	Prebiotic effects of oligosaccharides on selected vaginal lactobacilli and pathogenic microorganisms. Anaerobe, 2005, 11, 145-153.	2.1	80
22	Functional and Structural Characterization of α-(1→2) Branching Sucrase Derived from DSR-E Glucansucrase. Journal of Biological Chemistry, 2012, 287, 7915-7924.	3.4	78
23	Functional Metagenomics Reveals Novel Pathways of Prebiotic Breakdown by Human Gut Bacteria. PLoS ONE, 2013, 8, e72766.	2.5	78
24	Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only α(1–6) and α(1–3) linkages. Gene, 1996, 182, 23-32.	2.2	77
25	CAZyme discovery and design for sweet dreams. Current Opinion in Chemical Biology, 2014, 19, 17-24.	6.1	74
26	α-D-Glucan-Based Dendritic Nanoparticles Prepared by in Vitro Enzymatic Chain Extension of Glycogen. Biomacromolecules, 2006, 7, 1720-1728.	5.4	72
27	Leuconostoc mesenteroides glucansucrase synthesis of flavonoid glucosides by acceptor reactions in aqueous-organic solvents. Carbohydrate Research, 2006, 341, 855-863.	2.3	70
28	Characterization of the Different Dextransucrase Activities Excreted in Glucose, Fructose, or Sucrose Medium by Leuconostoc mesenteroides NRRL B-1299. Applied and Environmental Microbiology, 1998, 64, 1298-1302.	3.1	69
29	Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity. FEBS Letters, 2004, 560, 91-97.	2.8	68
30	Crystal Structure of the Covalent Intermediate of Amylosucrase fromNeisseria polysacchareaâ€. Biochemistry, 2004, 43, 3104-3110.	2.5	67
31	Role of the Two Catalytic Domains of DSR-E Dextransucrase and Their Involvement in the Formation of Highly α-1,2 Branched Dextran. Journal of Bacteriology, 2005, 187, 296-303.	2.2	67
32	Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase fromLeuconostoc mesenteroidesNRRL B-1355. FEMS Microbiology Letters, 2000, 182, 81-85.	1.8	65
33	Exopolysaccharide (EPS) Synthesis by Oenococcus oeni: From Genes to Phenotypes. PLoS ONE, 2014, 9, e98898.	2.5	65
34	Design of α-Transglucosidases of Controlled Specificity for Programmed Chemoenzymatic Synthesis of Antigenic Oligosaccharides. Journal of the American Chemical Society, 2009, 131, 7379-7389.	13.7	64
35	Characterization of glucan-producing Leuconostoc strains isolated from sourdough. International Journal of Food Microbiology, 2010, 144, 1-9.	4.7	62
36	Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Current Opinion in Microbiology, 2010, 13, 293-300.	5.1	61

Magali Remaud-Simeon

#	Article	IF	CITATIONS
37	Characterization of a novel dextransucrase from Weissella confusa isolated from sourdough. Applied Microbiology and Biotechnology, 2013, 97, 5413-5422.	3.6	60
38	Enzymatic synthesis of glycamide surfactants by amidification reaction. Tetrahedron, 1997, 53, 5185-5194.	1.9	56
39	Structural Investigation of the Thermostability and Product Specificity of Amylosucrase from the Bacterium Deinococcus geothermalis. Journal of Biological Chemistry, 2012, 287, 6642-6654.	3.4	55
40	Effect of <i>Leuconostoc mesenteroides</i> NRRL B-512F Dextransucrase Carboxy-Terminal Deletions on Dextran and Oligosaccharide Synthesis. Applied and Environmental Microbiology, 1998, 64, 1644-1649.	3.1	54
41	Characterisation of a novel amylosucrase fromDeinococcus radiodurans. FEBS Letters, 2005, 579, 1405-1410.	2.8	53
42	Novel oligosaccharides synthesized from sucrose donor and cellobiose acceptor by alternansucrase. Carbohydrate Research, 2001, 331, 403-411.	2.3	52
43	Inventory of the <scp>GH</scp> 70 enzymes encoded by <i>LeuconostocÂcitreum </i> <scp>NRRL</scp> Bâ€1299 – identification of three novel αâ€transglucosylases. FEBS Journal, 2015, 282, 2115-2130.	4.7	49
44	Lipase-catalyzed chemoselective n-acylation of amino-sugar derivatives in hydrophobic solvent: Acid-amine ion-pair effects. Tetrahedron, 1997, 53, 7587-7594.	1.9	48
45	Sucrose-Utilizing Transglucosidases for Biocatalysis. Topics in Current Chemistry, 2010, 294, 25-48.	4.0	48
46	Applying Pairwise Combinations of Amino Acid Mutations for Sorting Out Highly Efficient Glucosylation Tools for Chemo-Enzymatic Synthesis of Bacterial Oligosaccharides. Journal of the American Chemical Society, 2012, 134, 18677-18688.	13.7	48
47	Induction and Transcription Studies of the Dextransucrase Gene in Leuconostoc mesenteroides NRRL B-512F. Applied and Environmental Microbiology, 1999, 65, 5504-5509.	3.1	47
48	Control of Lipase Enantioselectivity by Engineering the Substrate Binding Site and Access Channel. ChemBioChem, 2009, 10, 2760-2771.	2.6	46
49	Characterization of the First α-(1→3) Branching Sucrases of the GH70 Family. Journal of Biological Chemistry, 2016, 291, 7687-7702.	3.4	45
50	Cloning and sequencing of a gene coding for an extracellular dextransucrase (DSRB) fromLeuconostoc mesenteroidesNRRL B-1299 synthesizing only a Ŏű(1Ţŀœ6) glucan. FEMS Microbiology Letters, 1998, 159, 307-315.	1.8	44
51	Conserved Repeat Motifs and Glucan Binding by Glucansucrases of Oral Streptococci and <i>Leuconostoc mesenteroides</i> . Journal of Bacteriology, 2004, 186, 8301-8308.	2.2	44
52	New Efficient Recombinant Expression System To Engineer Candida antarctica Lipase B. Applied and Environmental Microbiology, 2010, 76, 2684-2687.	3.1	44
53	GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cellular and Molecular Life Sciences, 2016, 73, 2661-2679.	5.4	44
54	Identification of key amino acid residues inNeisseria polysacchareaamylosucrase. FEBS Letters, 2000, 474, 33-37.	2.8	43

#	Article	IF	CITATIONS
55	Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review. Applied Biochemistry and Biotechnology, 2019, 187, 583-611.	2.9	42
56	Dextransucrase production by Leuconostoc mesenteroides NRRL B-1299. Comparison with L. mesenteroides NRRL B-512F. Enzyme and Microbial Technology, 1997, 20, 523-530.	3.2	41
57	Characterisation of the activator effect of glycogen on amylosucrase fromNeisseria polysaccharea. FEMS Microbiology Letters, 2000, 186, 103-108.	1.8	41
58	Towards a novel explanation of Pseudomonas cepacia lipase enantioselectivity via molecular modelling of the enantiomer trajectory into the active site. Tetrahedron: Asymmetry, 2003, 14, 1807-1817.	1.8	41
59	Construction of a fully active truncated alternansucrase partially deleted of its carboxy-terminal domain. FEBS Letters, 2006, 580, 763-768.	2.8	41
60	Cloning, purification and characterization of a thermostable amylosucrase from <i>Deinococcus geothermalis</i> . FEMS Microbiology Letters, 2008, 285, 25-32.	1.8	41
61	Sucrose analogs: an attractive (bio)source for glycodiversification. Natural Product Reports, 2012, 29, 945.	10.3	40
62	Polymeric Iminosugars Improve the Activity of Carbohydrate-Processing Enzymes. Bioconjugate Chemistry, 2015, 26, 766-772.	3.6	40
63	Glucosylation of α-butyl- and α-octyl-d-glucopyranosides by dextransucrase and alternansucrase from Leuconostoc mesenteroides. Carbohydrate Research, 2003, 338, 855-864.	2.3	38
64	Investigations on the Determinants Responsible for Low Molar Mass Dextran Formation by DSR-M Dextransucrase. ACS Catalysis, 2017, 7, 7106-7119.	11.2	37
65	Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus, 2019, 9, 20180069.	3.0	37
66	Increased amylosucrase activity and specificity, and identification of regions important for activity, specificity and stability through molecular evolution. FEBS Journal, 2006, 273, 673-681.	4.7	35
67	A Structureâ€Controlled Investigation of Lipase Enantioselectivity by a Pathâ€Planning Approach. ChemBioChem, 2008, 9, 1308-1317.	2.6	35
68	Combinatorial engineering to enhance thermostability of amylosucrase. Protein Science, 2008, 17, 967-976.	7.6	33
69	Synthesis of dextrans with controlled amounts of α-1,2 linkages using the transglucosidase GBD–CD2. Applied Microbiology and Biotechnology, 2010, 86, 545-554.	3.6	33
70	Enzymatic amidification for the synthesis of biodegradable surfactants: Synthesis of N-acylated hydroxylated amines. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 13-17.	1.8	32
71	Lipase-catalyzed enantioselective transesterification toward esters of 2-bromo-tolylacetic acids. Tetrahedron: Asymmetry, 2003, 14, 317-323.	1.8	32
72	Encapsulation in LentiKats of Dextransucrase fromLeuconostoc mesenteroidesNRRL B-1299, and its Effect on Product Selectivity. Biocatalysis and Biotransformation, 2003, 21, 325-331.	2.0	32

#	Article	IF	CITATIONS
73	Isolation and chemoenzymatic treatment of glycoalkaloids from green, sprouting and rotting Solanum tuberosum potatoes for solanidine recovery. Food Chemistry, 2017, 220, 257-265.	8.2	32
74	Title is missing!. Biotechnology Letters, 1999, 13, 749-755.	0.5	30
75	Characterization of dextransucrases fromLeuconostoc mesenteroides NRRL B-1299. Applied Biochemistry and Biotechnology, 1997, 62, 47-59.	2.9	28
76	High-level production and purification of a fully active recombinant dextransucrase fromLeuconostoc mesenteroidesNRRL B-512F. FEMS Microbiology Letters, 2006, 261, 203-210.	1.8	28
77	NMR-Based Structural Glycomics for High-Throughput Screening of Carbohydrate-Active Enzyme Specificity. Analytical Chemistry, 2011, 83, 1202-1206.	6.5	28
78	Extending the Structural Diversity of αâ€Flavonoid Glycosides with Engineered Glucansucrases. ChemCatChem, 2014, 6, 2282-2291.	3.7	28
79	Lipase-catalysed synthesis of biosurfactants by transacylation of N-methyl-glucamine and fatty-acid methyl esters. Tetrahedron, 1997, 53, 7629-7634.	1.9	27
80	Deciphering an Undecided Enzyme: Investigations of the Structural Determinants Involved in the Linkage Specificity of Alternansucrase. ACS Catalysis, 2019, 9, 2222-2237.	11.2	27
81	Structure and Property Engineering of α- <scp>d</scp> -Glucans Synthesized by Dextransucrase Mutants. Biomacromolecules, 2012, 13, 187-195.	5.4	26
82	Computer-Aided Engineering of a Transglycosylase for the Glucosylation of an Unnatural Disaccharide of Relevance for Bacterial Antigen Synthesis. ACS Catalysis, 2015, 5, 1186-1198.	11.2	26
83	A dextran with unique rheological properties produced by the dextransucrase from Oenococcus kitaharae DSM 17330. Carbohydrate Polymers, 2018, 179, 10-18.	10.2	26
84	Maltooligosaccharide disproportionation reaction: an intrinsic property of amylosucrase fromNeisseria polysaccharea. FEBS Letters, 2002, 527, 67-70.	2.8	25
85	Genome Sequence of Weissella confusa LBAE C39-2, Isolated from a Wheat Sourdough. Journal of Bacteriology, 2012, 194, 1608-1609.	2.2	25
86	Crystallization and preliminary X-ray studies of recombinant amylosucrase fromNeisseria polysaccharea. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 203-205.	2.5	24
87	A novel family of glucosyl 1,5-anhydro-d-fructose derivatives synthesised by transglucosylation with dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydrate Research, 2005, 340, 395-401.	2.3	24
88	Factors affecting ?,-1,2 glucooligosaccharide synthesis byLeuconostoc mesenteroides NRRL B-1299 dextransucrase. Biotechnology and Bioengineering, 2001, 74, 498-504.	3.3	23
89	The structure of amylosucrase from <i>Deinococcus radiodurans</i> has an unusual open active-site topology. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 973-978.	0.7	23
90	Probing impact of active site residue mutations on stability and activity of <i>Neisseria polysaccharea</i> amylosucrase. Protein Science, 2013, 22, 1754-1765.	7.6	23

#	Article	IF	CITATIONS
91	Structural Insights into the Carbohydrate Binding Ability of an α-(1→2) Branching Sucrase from Glycoside Hydrolase Family 70. Journal of Biological Chemistry, 2016, 291, 7527-7540.	3.4	23
92	Optimized and Automated Protocols for High-Throughput Screening of Amylosucrase Libraries. Journal of Biomolecular Screening, 2007, 12, 715-723.	2.6	22
93	Genome Sequences of Three Leuconostoc citreum Strains, LBAE C10, LBAE C11, and LBAE E16, Isolated from Wheat Sourdoughs. Journal of Bacteriology, 2012, 194, 1610-1611.	2.2	22
94	Evaluation of dough rheological properties and bread texture of pearl millet-wheat flour mix. Journal of Food Science and Technology, 2016, 53, 2061-2066.	2.8	22
95	Towards the molecular understanding of glycogen elongation by amylosucrase. Proteins: Structure, Function and Bioinformatics, 2006, 66, 118-126.	2.6	21
96	Capillary electrophoresis analysis of glucooligosaccharide regioisomers. Electrophoresis, 2004, 25, 861-869.	2.4	20
97	Programmed chemo-enzymatic synthesis of the oligosaccharide component of a carbohydrate-based antibacterial vaccine candidate. Chemical Communications, 2015, 51, 2581-2584.	4.1	20
98	lsolation of a Gene from Leuconostoc citreum B/110-1-2 Encoding a Novel Dextransucrase Enzyme. Current Microbiology, 2011, 62, 1260-1266.	2.2	19
99	Probing Substrate Promiscuity of Amylosucrase from <i>Neisseria polysaccharea</i> . ChemCatChem, 2013, 5, 2288-2295.	3.7	19
100	Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts. Current Opinion in Chemical Biology, 2021, 61, 96-106.	6.1	19
101	Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure–Function Relationship Studies and Engineering. Microorganisms, 2021, 9, 1607.	3.6	19
102	Understanding the Polymerization Mechanism of Glycoside-Hydrolase Family 70 Glucansucrases. Journal of Biological Chemistry, 2006, 281, 31254-31267.	3.4	19
103	One-step synthesis of isomalto-oligosaccharide syrups and dextrans of controlled size using engineered dextransucrase. Biocatalysis and Biotransformation, 2008, 26, 141-151.	2.0	18
104	Combinatorial Engineering of Dextransucrase Specificity. PLoS ONE, 2013, 8, e77837.	2.5	18
105	A mixed molecular modelingâ€robotics approach to investigate lipase large molecular motions. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2517-2529.	2.6	17
106	Engineering of Candida antarctica lipase B for poly(Îμ-caprolactone) synthesis. European Polymer Journal, 2017, 95, 809-819.	5.4	17
107	Fructosylation of phenolic compounds by levansucrase from Gluconacetobacter diazotrophicus. Enzyme and Microbial Technology, 2019, 122, 19-25.	3.2	17
108	Enzymatic synthesis of polysaccharide-based copolymers. Green Chemistry, 2018, 20, 4012-4022.	9.0	16

#	Article	IF	CITATIONS
109	Optimizing the production of an α-(1→2) branching sucrase in Escherichia coli using statistical design. Applied Microbiology and Biotechnology, 2014, 98, 5173-5184.	3.6	15
110	Essential role of amino acid position 226 in oligosaccharide elongation by amylosucrase from <i>Neisseria polysaccharea</i> . Biotechnology and Bioengineering, 2014, 111, 1719-1728.	3.3	15
111	Engineering a branching sucrase for flavonoid glucoside diversification. Scientific Reports, 2018, 8, 15153.	3.3	15
112	Futile Encounter Engineering of the DSR-M Dextransucrase Modifies the Resulting Polymer Length. Biochemistry, 2019, 58, 2853-2859.	2.5	15
113	Neutral Genetic Drift-Based Engineering of a Sucrose-Utilizing Enzyme toward Glycodiversification. ACS Catalysis, 2019, 9, 1241-1252.	11.2	15
114	Kinetic modeling of oligosaccharide synthesis catalyzed byLeuconostoc mesenteroides NRRL B-1299 dextransucrase. , 1999, 63, 308-315.		14
115	Resolution of 2-bromo-o-tolyl-carboxylic acid by transesterification using lipases from Rhizomucor miehei and Pseudomonas cepacia. Tetrahedron: Asymmetry, 2001, 12, 2473-2480.	1.8	14
116	Synthesis of L-Rhamnose and N -Acetyl-D-Glucosamine Derivatives Entering in the Composition of Bacterial Polysaccharides by Use of Glucansucrases. Journal of Carbohydrate Chemistry, 2009, 28, 142-160.	1.1	14
117	Branching pattern of gluco-oligosaccharides and 1.5kDa dextran grafted by the α-1,2 branching sucrase GBD-CD2. Carbohydrate Polymers, 2013, 94, 567-576.	10.2	14
118	Reactor optimization for ?-1,2 glucooligosaccharide synthesis by immobilized dextransucrase. Biotechnology and Bioengineering, 2001, 75, 276-284.	3.3	13
119	A novel dextransucrase is produced by Leuconostoc citreum strain B/110-1-2: an isolate used for the industrial production of dextran and dextran derivatives. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1499-1506.	3.0	13
120	Functionalization of natural compounds by enzymatic fructosylation. Applied Microbiology and Biotechnology, 2017, 101, 5223-5234.	3.6	13
121	Convergent Chemoenzymatic Strategy to Deliver a Diversity of <i>Shigella flexneri</i> Serotype-Specific O-Antigen Segments from a Unique Lightly Protected Tetrasaccharide Core. Journal of Organic Chemistry, 2021, 86, 2058-2075.	3.2	13
122	Crystal structure of the Glu328GIn mutant ofNeisseria polysacchareaamylosucrase in complex with sucrose and maltoheptaose. Biocatalysis and Biotransformation, 2006, 24, 99-105.	2.0	12
123	Search for a dextransucrase minimal motif involved in dextran binding. FEBS Letters, 2007, 581, 4675-4680.	2.8	12
124	Macromolecular structure and film properties of enzymatically-engineered high molar mass dextrans. Carbohydrate Polymers, 2018, 181, 337-344.	10.2	12
125	Chapter 28. Successes in engineering glucansucrases to enhance glycodiversification. Carbohydrate Chemistry, 2014, , 624-645.	0.3	12
126	A laundry detergent compatible lichenase: Statistical optimization for production under solid state fermentation on crude millet. Industrial Crops and Products, 2013, 43, 349-354.	5.2	11

#	Article	IF	CITATIONS
127	Overview of the glucansucrase equipment of Leuconostoc citreum LBAE-E16 and LBAE-C11, two strains isolated from sourdough. FEMS Microbiology Letters, 2015, 362, 1-8.	1.8	11
128	Synthetic Derivatives of (+)- <i>epi</i> -α-Bisabolol Are Formed by Mammalian Cytochromes P450 Expressed in a Yeast Reconstituted Pathway. ACS Synthetic Biology, 2020, 9, 368-380.	3.8	10
129	A specific oligosaccharide-binding site in the alternansucrase catalytic domain mediates alternan elongation. Journal of Biological Chemistry, 2020, 295, 9474-9489.	3.4	9
130	Processivity of dextransucrases synthesizing very-high-molar-mass dextran is mediated by sugar-binding pockets in domain V. Journal of Biological Chemistry, 2020, 295, 5602-5613.	3.4	9
131	One-pot bi-enzymatic cascade synthesis of puerarin polyfructosides. Carbohydrate Polymers, 2020, 247, 116710.	10.2	9
132	A pH-Based High-Throughput Screening of Sucrose-Utilizing Transglucosidases for the Development of Enzymatic Glucosylation Tools. ChemCatChem, 2010, 2, 969-975.	3.7	8
133	Complete Genome Sequence of Leuconostoc citreum Strain NRRL B-742. Genome Announcements, 2014, 2, .	0.8	8
134	A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides. PLoS ONE, 2016, 11, e0161209.	2.5	8
135	Engineering of anp efficient mutant of Neisseria polysaccharea amylosucrase for the synthesis of controlled size maltooligosaccharides. Carbohydrate Polymers, 2017, 173, 403-411.	10.2	7
136	Novel product specificity toward erlose and panose exhibited by multisite engineered mutants of amylosucrase. Protein Science, 2017, 26, 566-577.	7.6	7
137	The apo structure of sucrose hydrolase fromXanthomonas campestrispv.campestrisshows an open active-site groove. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1309-1314.	2.5	6
138	Production of stable isotope labelled lipase Lip2 from Yarrowia lipolytica for NMR: Investigation of several expression systems. Protein Expression and Purification, 2014, 101, 14-20.	1.3	6
139	Investigation on the Synthesis of <i>Shigella flexneri</i> Specific Oligosaccharides Using Disaccharides as Potential Transglucosylase Acceptor Substrates. Journal of Organic Chemistry, 2015, 80, 11237-11257.	3.2	6
140	Redirecting substrate regioselectivity using engineered ΔN123-GBD-CD2 branching sucrases for the production of pentasaccharide repeating units of S. flexneri 3a, 4a and 4b haptens. Scientific Reports, 2021, 11, 2474.	3.3	6
141	Studies on a recombinant amylosucrase. Progress in Biotechnology, 1995, 10, 313-320.	0.2	5
142	An eco-design approach for an innovative production process of low molar mass dextran. Green Chemistry, 2019, 21, 4512-4531.	9.0	5
143	Enzymatic synthesis of phlorizin fructosides. Enzyme and Microbial Technology, 2021, 147, 109783.	3.2	5
144	Rational and Combinatorial Engineering of the Glucan Synthesizing Enzyme Amylosucrase. Biocatalysis and Biotransformation, 2003, 21, 271-277.	2.0	4

#	Article	IF	CITATIONS
145	Glucansucrases of GH family 70: What are the determinants of their specifities?. Biocatalysis and Biotransformation, 2006, 24, 137-145.	2.0	4
146	Small-Scale Production of Burkholderia cepacia ATCC21808 Lipase Adapted to High-Throughput Screening. Journal of Biomolecular Screening, 2008, 13, 72-79.	2.6	4
147	A highly thermostable lichenase from Bacillus sp. UEB-S: Biochemical and molecular characterization. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 8-12.	1.8	4
148	A generic HTS assay for kinase screening: Validation for the isolation of an engineered malate kinase. PLoS ONE, 2018, 13, e0193036.	2.5	3
149	Computer-aided engineering of a branching sucrase for the glucodiversification of a tetrasaccharide precursor of S. flexneri antigenic oligosaccharides. Scientific Reports, 2021, 11, 20294.	3.3	3
150	Real-Time Monitoring of Dextransucrase-Based Enzymatic Reaction Through Surface-Enhanced Ellipsometric Contrast (SEEC) Microscopy in Liquid Environment. BioNanoScience, 2014, 4, 37-45.	3.5	2
151	Enzymatic Synthesis of Surfactants Via Amide Bonds. Biocatalysis and Biotransformation, 1998, 16, 383-393.	2.0	1
152	The role of the C domain in the thermostability of GH70 enzymes investigated by domain swapping. Amylase, 2022, 6, 11-19.	1.6	0