Paul Berger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3667481/publications.pdf

Version: 2024-02-01

186265 214800 3,096 188 28 47 citations h-index g-index papers 193 193 193 2754 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of strain and growth conditions on the growth front profile of InxGa1â 'xAs on GaAs during the pseudomorphic growth regime. Applied Physics Letters, 1988, 53, 684-686.	3.3	246
2	Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Solar Energy Materials and Solar Cells, 2010, 94, 128-132.	6.2	195
3	Room temperature operation of epitaxially grown Si/Si0.5Ge0.5/Si resonant interband tunneling diodes. Applied Physics Letters, 1998, 73, 2191-2193.	3.3	104
4	Polymer solar cells: P3HT:PCBM and beyond. Journal of Renewable and Sustainable Energy, 2018, 10, .	2.0	104
5	Nanometer-period gratings in hydrogen silsesquioxane fabricated by electron beam lithography. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, L12.	1.6	80
6	Full-band simulation of indirect phonon assisted tunneling in a silicon tunnel diode with delta-doped contacts. Applied Physics Letters, 2001, 78, 814-816.	3. 3	60
7	Photoresponsivity of polymer thin-film transistors based on polyphenyleneethynylene derivative with improved hole injection. Applied Physics Letters, 2004, 85, 4219-4221.	3.3	60
8	Tri-State Logic Using Vertically Integrated Si–SiGe Resonant Interband Tunneling Diodes With Double NDR. IEEE Electron Device Letters, 2004, 25, 646-648.	3.9	55
9	Highly repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown by molecular beam epitaxy. Applied Physics Letters, 2016, 109, .	3.3	52
10	Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping. Applied Physics Letters, 1986, 49, 470-472.	3.3	51
11	Current-voltage characteristics of high current density silicon Esaki diodes grown by molecular beam epitaxy and the influence of thermal annealing. IEEE Transactions on Electron Devices, 2000, 47, 1707-1714.	3.0	47
12	4.8% efficient poly (3-hexylthiophene)-fullerene derivative (1:0.8) bulk heterojunction photovoltaic devices with plasma treated $AgO[sub\ x]/indium\ tin\ oxide\ anode\ modification.$ Applied Physics Letters, 2008, 92, 013306.	3.3	47
13	Near-UV electroluminescence in unipolar-doped, bipolar-tunneling GaN/AlN heterostructures. Light: Science and Applications, 2018, 7, 17150-17150.	16.6	47
14	Optical and electronic properties of SiGeC alloys grown on Si substrates. Journal of Crystal Growth, 1995, 157, 386-391.	1.5	45
15	Diffusion barrier cladding in Si/SiGe resonant interband tunneling diodes and their patterned growth on PMOS source/drain regions. IEEE Transactions on Electron Devices, 2003, 50, 1876-1884.	3.0	45
16	Room-temperature negative differential resistance in polymer tunnel diodes using a thin oxide layer and demonstration of threshold logic. Applied Physics Letters, 2005, 87, 203506.	3.3	45
17	Monolithically integrated Si/SiGe resonant interband tunnel diode/CMOS demonstrating low voltage MOBILE operation. Solid-State Electronics, 2004, 48, 1907-1910.	1.4	44
18	In0.53Ga0.47As metalâ€semiconductorâ€metal photodiodes with transparent cadmium tin oxide Schottky contacts. Applied Physics Letters, 1994, 65, 1930-1932.	3.3	43

#	Article	IF	CITATIONS
19	Comparative study of the growth processes of GaAs, AlGaAs, InGaAs, and InAlAs lattice matched and nonlattice matched semiconductors using highâ€energy electron diffraction. Journal of Applied Physics, 1987, 61, 2856-2860.	2.5	41
20	431 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes. Applied Physics Letters, 2018, 112, .	3.3	41
21	A study of strain-related effects in the molecular-beam epitaxy growth of InxGa1â^'xAs on GaAs using reflection high-energy electron diffraction. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1987, 5, 1162.	1.6	40
22	151 kA/cm2 peak current densities in Si/SiGe resonant interband tunneling diodes for high-power mixed-signal applications. Applied Physics Letters, 2003, 83, 3308-3310.	3.3	38
23	Monolithically Peltierâ€cooled verticalâ€cavity surfaceâ€emitting lasers. Applied Physics Letters, 1991, 59, 117-119.	3.3	37
24	Transparent and opaque Schottky contacts on undoped In0.52Al0.48As grown by molecular beam epitaxy. Applied Physics Letters, 1995, 66, 3471-3473.	3.3	33
25	Atomic layer deposited HfO2 gate dielectrics for low-voltage operating, high-performance poly-(3-hexythiophene) organic thin-film transistors. Organic Electronics, 2010, 11, 1719-1722.	2.6	32
26	Monolithically integrated InP-based front-end photoreceivers. IEEE Transactions on Electron Devices, 1991, 38, 1324-1333.	3.0	31
27	Full band modeling of the excess current in a delta-doped silicon tunnel diode. Journal of Applied Physics, 2003, 94, 5005.	2.5	31
28	Three-terminal Si-based negative differential resistance circuit element with adjustable peak-to-valley current ratios using a monolithic vertical integration. Applied Physics Letters, 2004, 84, 2688-2690.	3.3	31
29	Epitaxially grown Si resonant interband tunnel diodes exhibiting high current densities. IEEE Electron Device Letters, 1999, 20, 329-331.	3.9	30
30	Si resonant interband tunnel diodes grown by low-temperature molecular-beam epitaxy. Applied Physics Letters, 1999, 75, 1308-1310.	3.3	29
31	Demonstration of allâ€optical modulation in a vertical guidedâ€wave nonlinear coupler. Applied Physics Letters, 1988, 52, 1125-1127.	3.3	28
32	The relation of the performance characteristics of pseudomorphic In0.53+xGa0.47â°'xAs/In0.52Al0.48As (0â‰xâ‰0.32) modulationâ€doped fieldâ€effect transistors to molecularâ€beam epitaxial growth modes. Journal of Applied Physics, 1990, 68, 347-350.	2.5	28
33	A waveguide directional coupler with a nonlinear coupling medium. IEEE Journal of Quantum Electronics, 1991, 27, 788-795.	1.9	28
34	Si/SiGe resonant interband tunnel diode with f/sub r0/ 20.2 GHz and peak current density 218 kA/cm/sup 2/ for K-band mixed-signal applications. IEEE Electron Device Letters, 2006, 27, 364-367.	3.9	28
35	High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition. Applied Physics Letters, 2012, 100, .	3.3	28
36	Optical properties of Ge1-yCy alloys. Journal of Electronic Materials, 1996, 25, 297-300.	2.2	27

#	Article	IF	Citations
37	Liquid phase epitaxial growth of InGaAs on InP using rareâ€earthâ€treated melts. Journal of Applied Physics, 1996, 80, 7094-7103.	2.5	27
38	High electric-field effects on short-channel polythiophene polymer field-effect transistors. Journal of Applied Physics, 2004, 95, 1497-1501.	2.5	27
39	Si/SiGe Resonant Interband Tunneling Diodes Incorporating \$delta\$-Doping Layers Grown by Chemical Vapor Deposition. IEEE Electron Device Letters, 2009, 30, 1173-1175.	3.9	27
40	Negative Differential Resistance Devices and Circuits. , 2011, , 176-241.		27
41	MSM photodiodes. IEEE Potentials, 1996, 15, 25-29.	0.3	26
42	The Effect of Spacer Thicknesses on Si-Based Resonant Interband Tunneling Diode Performance and Their Application to Low-Power Tunneling Diode SRAM Circuits. IEEE Transactions on Electron Devices, 2006, 53, 2243-2249.	3.0	26
43	Plasmaâ€Polymerized Multistacked Organic Bipolar Films: A New Approach to Flexible Highâ€×i>κ Dielectrics. Advanced Materials, 2008, 20, 2383-2388.	21.0	26
44	1.3 μm photoresponsivity in Si-based Ge1â^'xCx photodiodes. Applied Physics Letters, 1998, 72, 1860-1862.	3.3	25
45	Investigation of the interface region produced by molecular beam epitaxial regrowth. Journal of Electronic Materials, 1989, 18, 137-142.	2.2	24
46	In/sub 0.53/Ga/sub 0.47/As MSM photodiodes with transparent CTO Schottky contacts and digital superlattice grading. IEEE Transactions on Electron Devices, 1997, 44, 2174-2179.	3.0	23
47	Selective deuteron production using target normal sheath acceleration. Physics of Plasmas, 2012, 19, .	1.9	23
48	Superior growth, yield, repeatability, and switching performance in GaN-based resonant tunneling diodes. Applied Physics Letters, 2020, 116, .	3.3	22
49	Bandâ€edge photoluminescence from pseudomorphic Si0.96Sn0.04 alloy. Applied Physics Letters, 1996, 68, 3105-3107.	3.3	20
50	Substrate orientation effects on dopant incorporation in InP grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 1993, 73, 4095-4097.	2.5	19
51	Performance characteristics of GalnAs/GaAs large optical cavity quantum well lasers. Electronics Letters, 1991, 27, 680.	1.0	18
52	Annealing of defect density and excess currents in Si-based tunnel diodes grown by low-temperature molecular-beam epitaxy. Journal of Applied Physics, 2004, 96, 747-753.	2.5	17
53	Capacitance-voltage characterization of pulsed plasma polymerized allylamine dielectrics for flexible polymeric field effect transistors. Journal of Electronic Materials, 2004, 33, 1240-1247.	2.2	17
54	RF Performance and Modeling of Si/SiGe Resonant Interband Tunneling Diodes. IEEE Transactions on Electron Devices, 2005, 52, 2129-2135.	3.0	17

#	Article	IF	CITATIONS
55	930 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes grown on MOCVD GaN-on-sapphire template. Applied Physics Letters, 2019, 114, .	3.3	17
56	Epitaxial Si-based tunnel diodes. Thin Solid Films, 2000, 380, 145-150.	1.8	16
57	Growth temperature and dopant species effects on deep levels in Si grown by low temperature molecular beam epitaxy. Journal of Applied Physics, 2003, 93, 9104-9110.	2.5	16
58	90 nm 32 \$imes\$ 32 bit Tunneling SRAM Memory Array With 0.5 ns Write Access Time, 1 ns Read Access Time and 0.5 V Operation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 2432-2445.	5.4	16
59	Orientationâ€dependent phase modulation in InGaAs/GaAs multiquantum well waveguides. Applied Physics Letters, 1988, 53, 2129-2131.	3.3	15
60	"p-on-n―Si interband tunnel diode grown by molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 290.	1.6	15
61	High sensitivity Si-based backward diodes for zero-biased square-law detection and the effect of post-growth annealing on performance. IEEE Electron Device Letters, 2005, 26, 575-578.	3.9	15
62	Characterization and Electrical Properties of Individual Au–NiO–Au Heterojunction Nanowires. IEEE Nanotechnology Magazine, 2007, 6, 676-681.	2.0	15
63	Plasma-polymerized multistacked bipolar gate dielectric for organic thin-film transistors. Organic Electronics, 2010, 11, 1767-1771.	2.6	15
64	Viability Bounds of M2M Communication Using Energy-Harvesting and Passive Wake-Up Radio. IEEE Access, 2017, 5, 27868-27878.	4.2	15
65	Flexible, solution-processed, indium oxide (In2O3) thin film transistors (TFT) and circuits for internet-of-things (IoT). Materials Science in Semiconductor Processing, 2022, 139, 106354.	4.0	15
66	Realization of in-situ sub two-dimensional quantum structures by strained layer growth phenomena in the InxGa1-xAs/GaAs system. Journal of Electronic Materials, 1996, 25, 479-483.	2.2	14
67	Metal-semiconductor-metal photodetectors. , 2001, 4285, 198.		14
68	Printed and organic diodes: devices, circuits and applications. Flexible and Printed Electronics, 2017, 2, 033001.	2.7	14
69	Investigation of molecular beam epitaxial In0.53Ga0.47As regrown on liquid phase epitaxial In0.53Ga0.47As/InP. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1986, 4, 540.	1.6	13
70	InGaAs/GaAs multiquantum-well electroabsorption modulator with integrated waveguide. Optics Letters, 1987, 12, 820.	3.3	13
71	Growth and properties of In0.52Al0.48As/In0.53Ga0.47As, GaAS: In and InGaAs/GaAs multilayers. Journal of Crystal Growth, 1987, 81, 373-377.	1.5	13
72	10 GHz bandwidth monolithicpâ€iâ€nmodulationâ€doped field effect transistor photoreceiver. Applied Physics Letters, 1993, 63, 2115-2116.	3.3	13

#	Article	IF	CITATIONS
73	Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6:C4F8 and self-limiting thermal oxidation on Si substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 763-768.	1.2	13
74	0.6V Threshold Voltage Thin Film Transistors With Solution Processable Indium Oxide (In ₂ O ₃) Channel and Anodized High-\$kappa\$ Al ₂ O ₃ Dielectric. IEEE Electron Device Letters, 2019, 40, 1112-1115.	3.9	13
75	GaAs quantum well laser and heterojunction bipolar transistor integration using molecular beam epitaxial regrowth. Applied Physics Letters, 1991, 59, 2826-2828.	3.3	12
76	Strain modification in thin Silâ^'xâ^'yGexCy alloys on (100) Si for formation of high density and uniformly sized quantum dots. Journal of Applied Physics, 1999, 85, 578-582.	2.5	12
77	Sensitivity of Si-based zero-bias backward diodes for microwave detection. Electronics Letters, 2007, 43, 295.	1.0	12
78	Anodic Oxidation of Ultra-Thin Ti Layers on ITO Substrates and their Application in Organic Electronic Memory Elements. Electrochimica Acta, 2014, 137, 91-98.	5.2	12
79	Investigation of Switching Time in GaN/AlN Resonant Tunneling Diodes by Experiments and P-SPICE Models. IEEE Transactions on Electron Devices, 2020, 67, 75-79.	3.0	12
80	Substantial improvement by substrate misorientation in dc performance of Al0.5Ga0.5As/GaAs/Al0.5Ga0.5As doubleâ€heterojunctionNpNbipolar transistors grown by molecular beam epitaxy. Applied Physics Letters, 1991, 59, 186-188.	3.3	11
81	Integration of Si/SiGe HBT and Si-based RITD demonstrating controllable negative differential resistance for wireless applications. Solid-State Electronics, 2006, 50, 973-978.	1.4	11
82	Boron Delta-Doping Dependence on Si/SiGe Resonant Interband Tunneling Diodes Grown by Chemical Vapor Deposition. IEEE Transactions on Electron Devices, 2012, 59, 602-609.	3.0	11
83	AlN/GaN/AlN resonant tunneling diodes grown by rf-plasma assisted molecular beam epitaxy on freestanding GaN. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	11
84	In0.53Ga0.47Aspâ€iâ€nphotodiodes with transparent cadmium tin oxide contacts. Applied Physics Letters, 1992, 61, 1673-1675.	3.3	10
85	Current transport characteristics of SiGeC/Si heterojunction diode. IEEE Electron Device Letters, 1996, 17, 589-591.	3.9	10
86	P and B doped Si resonant interband tunnel diodes with as-grown negative differential resistance. Electronics Letters, 2009, 45, 759.	1.0	10
87	Feasibility and Fundamental Limits of Energy-Harvesting Based M2M Communications. International Journal of Wireless Information Networks, 2017, 24, 291-299.	2.7	10
88	1.0 GHz monolithic p-i-n MODFET photoreceiver using molecular beam epitaxial regrowth. IEEE Photonics Technology Letters, 1992, 4, 891-894.	2.5	9
89	pnp Si resonant interband tunnel diode with symmetrical NDR. Electronics Letters, 2001, 37, 1412.	1.0	9
90	Radiation tolerance of Si/Si0.6Ge0.4 resonant interband tunneling diodes. Journal of Applied Physics, 2004, 95, 6406-6408.	2.5	9

#	Article	IF	CITATIONS
91	NMOS/SiGe Resonant Interband Tunneling Diode Static Random Access Memory. , 2006, , .		9
92	Interfacial design and structure of protein/polymer films on oxidized AlGaN surfaces. Journal Physics D: Applied Physics, 2011, 44, 034010.	2.8	9
93	A Nonlinear Circuit Simulation of Switching Process in Resonant-Tunneling Diodes. IEEE Transactions on Electron Devices, 2016, 63, 4993-4997.	3.0	9
94	Molecular beam epitaxial growth and luminescence of InxGa1â^'xAs/InxAl1â^'xAs multiquantum wells on GaAs. Applied Physics Letters, 1987, 51, 261-263.	3.3	8
95	Anomalous effects of lamp annealing in modulation-doped In _{0.53} Ga _{0.47} As/In _{0.52} Al _{0.48} As and Si-implanted In _{0.53} Ga _{0.47} As. IEEE Transactions on Electron Devices, 1987, 34, 235-240.	3.0	8
96	Analysis of the Voltage Swing for Logic and Memory Applications in Si/SiGe Resonant Interband Tunnel Diodes Grown by Molecular Beam Epitaxy. IEEE Nanotechnology Magazine, 2007, 6, 158-163.	2.0	8
97	0.7-GHz Solution-Processed Indium Oxide Rectifying Diodes. IEEE Transactions on Electron Devices, 2020, 67, 360-364.	3.0	8
98	An AlGaAs doubleâ€heterojunction bipolar transistor grown by molecularâ€beam epitaxy. Applied Physics Letters, 1991, 59, 1099-1101.	3.3	7
99	8-element linear array monolithic p-i-n MODFET photoreceivers using molecular beam epitaxial regrowth. IEEE Photonics Technology Letters, 1993, 5, 63-66.	2.5	7
100	Si-based interband tunneling devices for high-speed logic and low power memory applications. , 0, , .		7
101	Strain-Engineered Si/SiGe Resonant Interband Tunneling Diodes Grown on \$hbox{Si}_{0.8}hbox{Ge}_{0.2}\$ Virtual Substrates With Strained Si Cladding Layers. IEEE Electron Device Letters, 2008, 29, 599-602.	3.9	7
102	Experimental determination of quantum-well lifetime effect on large-signal resonant tunneling diode switching time. Applied Physics Letters, 2015, 107, .	3.3	7
103	Negative differential resistance in polymer tunnel diodes using atomic layer deposited, TiO2 tunneling barriers at various deposition temperatures. Organic Electronics, 2017, 47, 228-234.	2.6	7
104	Effects of growth temperature on electrical properties of GaN/AlN based resonant tunneling diodes with peak current density up to 1.01 MA/cm2. AlP Advances, $2020,10,$.	1.3	7
105	Recombination velocity at molecularâ€beamâ€epitaxial GaAs regrown interfaces. Journal of Applied Physics, 1989, 65, 2571-2573.	2.5	6
106	Monolithically integrated Si/SiGe resonant interband tunneling diodes/CMOS mobile latch with high voltage swing. , 0, , .		6
107	Improved vertically stacked Siâ^•SiGe resonant interband tunnel diode pair with small peak voltage shift and unequal peak currents. Electronics Letters, 2004, 40, 1548.	1.0	6
108	Low sidewall damage plasma etching using ICP-RIE with HBr chemistry of Siâ [*] -SiGe resonant interband tunnel diodes. Electronics Letters, 2006, 42, 719.	1.0	6

#	Article	IF	Citations
109	Pulsed plasma polymerized dichlorotetramethyldisiloxane high-k gate dielectrics for polymer field-effect transistors. Journal of Applied Physics, 2006, 99, 014104.	2.5	6
110	Towards <i>in vivo</i> biosensors for lowâ€cost protein sensing. Electronics Letters, 2013, 49, 450-451.	1.0	6
111	Feasibility and fundamental limits of energy-harvesting based M2M communications. , 2016, , .		6
112	Selective atomic layer deposition on flexible polymeric substrates employing a polyimide adhesive as a physical mask. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 012405.	2.1	6
113	Monolithic integration of GaAs and In0.2Ga0.8As lasers by molecular beam epitaxy on GaAs. Applied Physics Letters, 1991, 58, 2698-2700.	3.3	5
114	A p-Ge/sub $1-x/C/sub\ x//n$ -Si heterojunction diode grown by molecular beam epitaxy. IEEE Electron Device Letters, 1997, 18, 411-413.	3.9	5
115	Overgrown Si/SiGe resonant interband tunnel diodes for integration with CMOS., 0,,.		5
116	Enhanced Emission Using Thin Li-Halide Cathodic Interlayers for Improved Injection into Poly(p-phenylene vinylene) Derivative PLEDs. Electrochemical and Solid-State Letters, 2008, 11, J76.	2.2	5
117	Methods for attaining high interband tunneling current in III-Nitrides. , 2012, , .		5
118	Tuning the Plasmonic Extinction Resonances of Hexagonal Arrays of Ag Nanoparticles. Plasmonics, 2015, 10, 1505-1512.	3.4	5
119	M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components. Sensors, 2018, 18, 3992.	3.8	5
120	Growth phenomena and characteristics of strained InxGalâ^xAs on GaAs. Journal of Crystal Growth, 1989, 95, 193-196.	1.5	4
121	Low resistance ohmic contacts to p-Ge/sub 1-x/Cx on Si. IEEE Electron Device Letters, 1997, 18, 7-9.	3.9	4
122	Antireflection coatings based on fluoride formulations for organic solar cells. Technical Physics Letters, 2016, 42, 359-361.	0.7	4
123	Antireflection composite coatings for organic solar cells. Applied Solar Energy (English Translation) Tj $$ ETQq 1 1	. 0.784314 rg	gBŢ/Overlo <mark>ck</mark>
124	Advancements in Solution Processable Devices using Metal Oxides For Printed Internet-of-Things Objects. , 2019, , .		4
125	Dependence of growth temperature on the electrical properties and microstructure of MBE-grown AlN/GaN resonant tunneling diodes on sapphire. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 032214.	1,2	4
126	Electroluminescence in Unipolar-Doped <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>In</mml:mi><mml:mrow><mml:mn>0.53</mml:mn></mml:mrow>< Resonant-Tunneling Diodes: A Competition between Interband Tunneling and Impact Ionization. Physical Review Applied, 2021, 16, .</mml:msub></mml:math>	/mml ana sub>	<maml:msub></maml:msub>

#	Article	IF	Citations
127	Monolithic GaAs/AlGaAs pin MESFET photoreceiver using a single molecular beam epitaxy growth step. Electronics Letters, 1993, 29, 1133.	1.0	3
128	Challenges in integration of Resonant Interband Tunnel Devices with CMOS. , 0, , .		3
129	Strain engineered Siâ^•SiGe resonant interband tunneling diodes with outside barriers grown on Si0.8Ge0.2 virtual substrates. Applied Physics Letters, 2008, 93, 102113.	3.3	3
130	Observation of strain in pseudomorphic Si1â^'xGex by tracking phonon participation in Siâ^•SiGe resonant interband tunnel diodes via electron tunneling spectroscopy. Journal of Applied Physics, 2009, 106, 034501.	2. 5	3
131	Wireless Energy Harvesting and Communications: Limits and Reliability. , 2017, , .		3
132	Increasing the Efficiency of Organic Solar Cells by Antireflection Coatings Based on Fluoride Composites. Technical Physics Letters, 2018, 44, 295-296.	0.7	3
133	Monolithic GaAs/AlGaAs optical transmitter circuit using a single growth step. Electronics Letters, 1994, 30, 490-491.	1.0	3
134	<title>Buried heterostucture lasers using a single-step metal-organic chemical vapor deposition growth over patterned substrates /title>., 1992, 1676, 117.</td><td></td><td>2</td></tr><tr><td>135</td><td>Inverted, substrate-removed MSM and Schottky diode optical detectors. , 0, , .</td><td></td><td>2</td></tr><tr><td>136</td><td>Near band edge photoluminescence from pseudomorphic tensially strained Si0.985C0.015 alloy. Thin Solid Films, 1997, 294, 122-124.</td><td>1.8</td><td>2</td></tr><tr><td>137</td><td>Temperature dependent DCâ^•RF performance of Siâ^•SiGe resonant interband tunnelling diodes. Electronics Letters, 2005, 41, 559.</td><td>1.0</td><td>2</td></tr><tr><td>138</td><td>High-k Polymerized Dichlorotetramethyldisiloxane Films Deposited by Radio Frequency Pulsed Plasma for Gate Dielectrics in Polymer Field Effect Transistors. Materials Research Society Symposia Proceedings, 2005, 870, 131.</td><td>0.1</td><td>2</td></tr><tr><td>139</td><td>Delta-Doped Si/SiGe Zero-Bias Backward Diodes for Micro-Wave Detection. Device Research Conference, IEEE Annual, 2007, , .</td><td>0.0</td><td>2</td></tr><tr><td>140</td><td>Broadband Finiteâ€Difference Timeâ€Domain Modeling of Plasmonic Organic Photovoltaics. ETRI Journal, 2014, 36, 654-661.</td><td>2.0</td><td>2</td></tr><tr><td>141</td><td>2-volt Solution-Processed, Indium Oxide (In2 O3) Thin Film Transistors on flexible Kapton., 2019, , .</td><td></td><td>2</td></tr><tr><td>142</td><td>RTD Light Emission around 1550 nm with IQE up to 6% at 300 K. , 2020, , .</td><td></td><td>2</td></tr><tr><td>143</td><td>Flexible, Gallium Oxide (Ga<sub>2</sub>O<sub>3</sub>) Thin Film Transistors (TFTs) and Circuits for the Internet of Things (IoT)., 2021,,.</td><td></td><td>2</td></tr><tr><td>144</td><td>Long Wavelength Metal-semiconductor-metal Photodiodes With Transparent Cadmium Tin Oxide Schottky Contacts. , 0, , .</td><td></td><td>1</td></tr></tbody></table></title>		

#	Article	IF	CITATIONS
145	<title>Equivalent circuit modeling of metal-semiconductor-metal photodiodes with transparent conductor electrodes <math display="inline"></math> /title>. , 1997, , .</td><td></td><td>1</td></tr><tr><td>146</td><td>Photoluminescence Of Sisnc Alloys Grown On (100) Si Substrates. Materials Research Society Symposia Proceedings, 1998, 533, 327.</td><td>0.1</td><td>1</td></tr><tr><td>147</td><td>Development of ÎB/i-Si/ĨSb and ÎB/i-Si/ĨSb/i-Si/ĨB resonant interband tunnel diodes for integrated circuit applications. , 0, , .</td><td></td><td>1</td></tr><tr><td>148</td><td>SiGe diffusion barriers for P-doped Si/SiGe resonant interband tunnel diodes. , 0, , .</td><td></td><td>1</td></tr><tr><td>149</td><td>Monolithic vertical integration of Si/SiGe HBT and Si-based resonant interband tunneling diode demonstrating latching operation and adjustable peak-to-valley current ratios. , 0, , .</td><td></td><td>1</td></tr><tr><td>150</td><td>Analysis of the Biasing Conditions and Latching Operation for Si/SiGe Resonant Interband Tunnel Diode Based Tunneling SRAM. , 0, , .</td><td></td><td>1</td></tr><tr><td>151</td><td>High Temperature Characterization of Si/SiGe Resonant Interband Tunnel Diodes. , 0, , .</td><td></td><td>1</td></tr><tr><td>152</td><td>Simplified Si resonant interband tunnel diodes. , 2007, , .</td><td></td><td>1</td></tr><tr><td>153</td><td>New Device Physics of Cross-Gap Electroluminescence in Unipolar-Doped InGaAs/AlAs RTDs., 2019,,.</td><td></td><td>1</td></tr><tr><td>154</td><td>In-Situ RHEED Studies To Understand The Dislocation Formation Process In Growth Of InGaAs on GaAs. , 1988, 0944, 10.</td><td></td><td>0</td></tr><tr><td>155</td><td>Effects of substrate tilting in substantial improvement of DC performance of AlGaAs/GaAs n-p-n DHBTs grown by MBE. IEEE Transactions on Electron Devices, 1991, 38, 2717-2718.</td><td>3.0</td><td>0</td></tr><tr><td>156</td><td>Integrated photoreceiver array using molecular beam epitaxial regrowth., 0,,.</td><td></td><td>0</td></tr><tr><td>157</td><td>Monolithic PIN-FET photoreceivers. , 0, , .</td><td></td><td>0</td></tr><tr><td>158</td><td><title>Monolithic p-i-n-FET photoreceivers</title> ., 1994, 2149, 414.		0
159	Liquid phase epitaxial InGaAs on InP with rare-earth elements. , 0, , .		0
160	Liquid-phase epitaxial growth process of InGaAs on InP with rare-earth treatment., 1996,,.		0
161	Ge 1-x C x /Si heterojunction photodiode. , 1997, 3007, 162.		0
162	Electrical and optical properties of phosphorus doped Ge1â^'yCy. Thin Solid Films, 1998, 321, 47-50.	1.8	0

#	Article	IF	CITATIONS
163	<title>Optically interconnected static RAM for instruction-level parallel processors</title> ., 1999,,.		0
164	Integration of silicon-based tunnel diodes with CMOS: an RIT-OSU-NRL-NSF effort. , 0, , .		0
165	Capacitance-Voltage Characterization of Pulsed Plasma Polymerized Allylamine Dielectrics. Materials Research Society Symposia Proceedings, 2002, 736, 1.	0.1	0
166	Growth Temperature Effects on Deep-Levels in Si Grown by Low Temperature Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2002, 745, 691.	0.1	0
167	Light Sensitive Polymer Thin Film Transistors Based on BAS-PPE. Materials Research Society Symposia Proceedings, 2004, 814, 152.	0.1	0
168	A combined model for Si-based resonant interband tunneling diodes grown on SOI., 0,,.		0
169	Phosphorus diffusion in Si-based resonant interband tunneling diodes and tri-state logic using vertically stacked diodes. Materials Science in Semiconductor Processing, 2005, 8, 411-416.	4.0	0
170	Low Sidewall Damage Plasma Etching with ICP-RIE and HBr Chemistry of Si/SiGe Resonant Interband Tunnel Diodes. , 0, , .		0
171	Monolithic Si/SiGe HBT-RITD Circuit with Controllable Negative Differential Resistance for Voltage Controlled Oscillator Applications. , 0, , .		0
172	Si-Based Resonant Interband Tunnel Diode/CMOS Integrated Memory Circuit., 2006,,.		0
173	Temperature dependent empirical modeling of proximity diffused Si esaki diodes and memory circuits. , 2007, , .		0
174	Anneal time study of Si resonant interband tunnel diodes grown by low-temperature molecular-beam epitaxy., 2007,,.		0
175	Surface modification to the indium tin oxide (ITO) anodes through plasma oxidized silver for efficient P3HT:PCBM (1:0.8) bulk heterojunction photovoltaic devices. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
176	Zero-bias Si backward diodes detectors incorporating P and B & amp; $\#x03B4$; doping layers grown by chemical vapor deposition., 2009,,.		0
177	Efficient poly(3-hexylthiophene)-fullerene derivative bulk heterojunction photovoltaic devices using unique self-assembled layer of Ag nanoparticles with controllable particle-to-particle spacing., 2009,		0
178	Efficient organic bulk heterojunction solar cells through near infrared absorbing metallated thiophene complexes., 2009,,.		0
179	200-mm CVD Grown Si/SiGe Resonant Interband Tunnel Diodes Optimized for High Peak-to-Valley Current Ratios. , 2012, , .		0
180	(Invited) Si/SiGe Resonant Interband Tunnel Diodes Grown by Large-Area Chemical Vapor Deposition. ECS Transactions, 2013, 58, 81-88.	0.5	0

#	Article	lF	CITATIONS
181	Demonstration of hybrid prototype sealant for encapsulating organic photovoltaics. , 2013, , .		O
182	Foreword Special Issue on Advanced Technology for Ultra-Low Power Electronic Devices. IEEE Journal of the Electron Devices Society, 2016, 4, 203-204.	2.1	0
183	Guest Editorial Special Section on the Second Electron Devices Technology and Manufacturing (EDTM) Conference 2018. IEEE Journal of the Electron Devices Society, 2018, 6, 1197-1199.	2.1	O
184	Pulsed characteristics for high current, large area GaN/Ain resonant tunneling diodes. , 2019, , .		0
185	Foreword Special Issue on Low-Temperature Processing of Electronic Materials for Cutting Edge Devices. IEEE Transactions on Electron Devices, 2021, 68, 3138-3141.	3.0	O
186	Temperature Characterization of Unipolar-Doped Electroluminescence in Vertical GaN/AlN Heterostructures. Energies, 2021, 14, 6654.	3.1	0
187	Resonant Tunneling and Room Temperature Negative Differential Resistance in TiO_2/MEH-PPV Junctions for Quantum Functional Circuits. , 2006, , .		O
188	Flexible Thin Film Transistor (TFT) and Circuits for Internet of Things (IoT) based on Solution Processed Indium Gallium Zinc Oxide (IGZO)., 2021,,.		0