## Qing Zhang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3667149/publications.pdf

Version: 2024-02-01

212 papers

20,471 citations

52 h-index 140 g-index

213 all docs

213 docs citations

times ranked

213

26160 citing authors

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | From Bulk to Monolayer MoS <sub>2</sub> : Evolution of Raman Scattering. Advanced Functional Materials, 2012, 22, 1385-1390.                                                                                                  | 7.8  | 3,354     |
| 2  | Single-Layer MoS <sub>2</sub> Phototransistors. ACS Nano, 2012, 6, 74-80.                                                                                                                                                     | 7.3  | 3,103     |
| 3  | Fabrication of Single―and Multilayer MoS <sub>2</sub> Filmâ€Based Fieldâ€Effect Transistors for Sensing<br>NO at Room Temperature. Small, 2012, 8, 63-67.                                                                     | 5.2  | 1,346     |
| 4  | Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011, 6, 496-500.                                                                                                      | 15.6 | 1,322     |
| 5  | Few-Layer MoS <sub>2</sub> : A Promising Layered Semiconductor. ACS Nano, 2014, 8, 4074-4099.                                                                                                                                 | 7.3  | 1,181     |
| 6  | High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.                                                                                                                              | 6.6  | 757       |
| 7  | MoS <sub>2</sub> /Si Heterojunction with Vertically Standing Layered Structure for Ultrafast,<br>Highâ€Detectivity, Selfâ€Driven Visible–Near Infrared Photodetectors. Advanced Functional Materials,<br>2015, 25, 2910-2919. | 7.8  | 554       |
| 8  | Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets.<br>Advanced Functional Materials, 2016, 26, 6238-6245.                                                                       | 7.8  | 529       |
| 9  | Optical Identification of Single―and Few‣ayer MoS <sub>2</sub> Sheets. Small, 2012, 8, 682-686.                                                                                                                               | 5.2  | 290       |
| 10 | Highly Stable and Reversible Lithium Storage in SnO <sub>2</sub> Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition. Nano Letters, 2014, 14, 4852-4858.                                          | 4.5  | 269       |
| 11 | Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. Journal of Materials Chemistry A, 2013, 1, 4173.                                                                                           | 5.2  | 259       |
| 12 | Ultraviolet Photodetectors Based on Anodic TiO <sub>2</sub> Nanotube Arrays. Journal of Physical Chemistry C, 2010, 114, 10725-10729.                                                                                         | 1.5  | 230       |
| 13 | Layer Thinning and Etching of Mechanically Exfoliated MoS <sub>2</sub> Nanosheets by Thermal Annealing in Air. Small, 2013, 9, 3314-3319.                                                                                     | 5.2  | 229       |
| 14 | Sensing Mechanisms for Carbon Nanotube Based NH <sub>3</sub> Gas Detection. Nano Letters, 2009, 9, 1626-1630.                                                                                                                 | 4.5  | 223       |
| 15 | 3R MoS <sub>2</sub> with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device. Advanced Materials, 2017, 29, 1701486.                                                                                    | 11.1 | 197       |
| 16 | Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Advanced Materials, 2012, 24, 4138-4142.                                                                                           | 11.1 | 183       |
| 17 | Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochemistry Communications, 2003, 5, 800-803.                                                                                      | 2.3  | 178       |
| 18 | Advances in Carbon-Nanotube Assembly. Small, 2007, 3, 24-42.                                                                                                                                                                  | 5.2  | 174       |

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity. Energy and Environmental Science, 2014, 7, 655-661.                                                             | 15.6 | 174       |
| 20 | A novel multi-walled carbon nanotube-based biosensor for glucose detection. Biochemical and Biophysical Research Communications, 2003, 311, 572-576.                                        | 1.0  | 164       |
| 21 | Roles of carbon nanotubes in novel energy storage devices. Carbon, 2017, 122, 462-474.                                                                                                      | 5.4  | 157       |
| 22 | Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method. Carbon, 2004, 42, 2263-2267.                                                                        | 5.4  | 138       |
| 23 | Ultrahigh Oxygen Evolution Reaction Activity Achieved Using Ir Single Atoms on Amorphous CoO <i><sub>x</sub></i> Nanosheets. ACS Catalysis, 2021, 11, 123-130.                              | 5.5  | 138       |
| 24 | Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diamond and Related Materials, 2004, 13, 1327-1332.                                                                       | 1.8  | 136       |
| 25 | Low-Temperature H <sub>2</sub> S Detection with Hierarchical Cr-Doped WO <sub>3</sub> Microspheres. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9674-9683.                           | 4.0  | 136       |
| 26 | Manipulation of carbon nanotubes using AC dielectrophoresis. Applied Physics Letters, 2005, 86, 153116.                                                                                     | 1.5  | 127       |
| 27 | Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Research, 2010, 3, 281-287.                                                                                           | 5.8  | 127       |
| 28 | DNA biosensors based on self-assembled carbon nanotubes. Biochemical and Biophysical Research Communications, 2004, 325, 1433-1437.                                                         | 1.0  | 119       |
| 29 | High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks. Nano Energy, 2014, 5, 91-96.                                                                   | 8.2  | 112       |
| 30 | Atomically Dispersed Co–P <sub>3</sub> on CdS Nanorods with Electronâ€Rich Feature Boosts Photocatalysis. Advanced Materials, 2020, 32, e1904249.                                           | 11.1 | 105       |
| 31 | High performance lithium ion battery anodes based on carbon nanotube–silicon core–shell nanowires with controlled morphology. Carbon, 2013, 59, 264-269.                                    | 5.4  | 103       |
| 32 | Individually Dispersing Single-Walled Carbon Nanotubes with Novel Neutral pH Water-Soluble Chitosan Derivatives. Journal of Physical Chemistry C, 2008, 112, 7579-7587.                     | 1.5  | 102       |
| 33 | Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor. Nano Energy, 2019, 66, 104185.                                                              | 8.2  | 98        |
| 34 | Ultrahigh volumetric capacity lithium ion battery anodes with CNT–Si film. Nano Energy, 2014, 8, 71-77.                                                                                     | 8.2  | 95        |
| 35 | Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS <sub>2</sub> / <i>h</i> >-BN van der Waals Heterostructures on Au Foils. ACS Nano, 2017, 11, 4328-4336.        | 7.3  | 87        |
| 36 | Atomic layer deposition of Co <sub>3</sub> O <sub>4</sub> on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology, 2015, 26, 094001. | 1.3  | 84        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Progress towards high-power Li/CF <sub>x</sub> batteries: electrode architectures using carbon nanotubes with CF <sub>x</sub> . Physical Chemistry Chemical Physics, 2015, 17, 22504-22518.                                    | 1.3  | 76        |
| 38 | Soft silicon anodes for lithium ion batteries. Energy and Environmental Science, 2014, 7, 2261.                                                                                                                                | 15.6 | 70        |
| 39 | Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser and Photonics Reviews, 2014, 8, 73-93.                                                                                                     | 4.4  | 67        |
| 40 | Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 2020, $11$ , 6086.                                                                                         | 5.8  | 67        |
| 41 | High performance carbon nanotube–Si core–shell wires with a rationally structured core for lithium ion battery anodes. Nanoscale, 2013, 5, 1503.                                                                               | 2.8  | 66        |
| 42 | Highly stable and flexible Li-ion battery anodes based on TiO <sub>2</sub> coated 3D carbon nanostructures. Journal of Materials Chemistry A, 2015, 3, 15394-15398.                                                            | 5.2  | 65        |
| 43 | High performance binder-free Sn coated carbon nanotube array anode. Carbon, 2015, 82, 282-287.                                                                                                                                 | 5.4  | 65        |
| 44 | Metal-free SWNT/carbon/MnO 2 hybrid electrode for high performance coplanar micro-supercapacitors. Nano Energy, 2016, 22, 11-18.                                                                                               | 8.2  | 64        |
| 45 | Vertically Aligned CNT‧upported Thick Ge Films as Highâ€Performance 3D Anodes for Lithium Ion Batteries. Small, 2014, 10, 2826-2829.                                                                                           | 5.2  | 61        |
| 46 | Influences of ac electric field on the spatial distribution of carbon nanotubes formed between electrodes. Journal of Applied Physics, 2006, 100, 024309.                                                                      | 1.1  | 60        |
| 47 | Ambipolar to Unipolar Conversion in Graphene Field-Effect Transistors. ACS Nano, 2011, 5, 3198-3203.                                                                                                                           | 7.3  | 60        |
| 48 | Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material. Electrochimica Acta, 2013, 102, 246-251.                                                                                                      | 2.6  | 60        |
| 49 | Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper. Advanced Materials, 2016, 28, 4684-4691.                                                                                              | 11.1 | 59        |
| 50 | Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nature Communications, 2021, 12, 6425.                                                                            | 5.8  | 58        |
| 51 | Electron field emission enhancement effects of nano-diamond films. Surface and Coatings Technology, 2003, 167, 143-147.                                                                                                        | 2.2  | 57        |
| 52 | Scalable Production of Two-Dimensional Metallic Transition Metal Dichalcogenide Nanosheet Powders Using NaCl Templates toward Electrocatalytic Applications. Journal of the American Chemical Society, 2019, 141, 18694-18703. | 6.6  | 56        |
| 53 | Semiconductor-based dynamic heterojunctions as an emerging strategy for high direct-current mechanical energy harvesting. Nano Energy, 2021, 83, 105849.                                                                       | 8.2  | 56        |
| 54 | Inâ€Plane Anisotropic Properties of 1Tâ€2â€MoS <sub>2</sub> Layers. Advanced Materials, 2019, 31, e1807764.                                                                                                                    | 11.1 | 55        |

| #  | Article                                                                                                                                                                                                                  | IF  | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ni–Si nanosheet network as high performance anode for Li ion batteries. Journal of Power Sources, 2015, 280, 393-396.                                                                                                    | 4.0 | 51        |
| 56 | Graphene/mica based ammonia gas sensors. Applied Physics Letters, 2014, 105, .                                                                                                                                           | 1.5 | 50        |
| 57 | Deposition of hydrogenated diamond-like carbon films under the impact of energetic hydrocarbon ions. Journal of Applied Physics, 1998, 84, 5538-5542.                                                                    | 1.1 | 48        |
| 58 | Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Analytica Chimica Acta, 2006, 556, 171-177.                                                 | 2.6 | 48        |
| 59 | Copper–silicon core–shell nanotube arrays for free-standing lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 15294.                                                                                | 5.2 | 48        |
| 60 | Electron field emission from carbon nanotubes and undoped nano-diamond. Diamond and Related Materials, 2003, 12, 8-14.                                                                                                   | 1.8 | 46        |
| 61 | Sputtered nickel oxide on vertically-aligned multiwall carbon nanotube arrays for lithium-ion batteries. Carbon, 2014, 68, 619-627.                                                                                      | 5.4 | 46        |
| 62 | A hierarchical 3D carbon nanostructure for high areal capacity and flexible lithium ion batteries. Carbon, 2016, 98, 504-509.                                                                                            | 5.4 | 45        |
| 63 | Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochimica Acta, 2013, 88, 766-771.                                                                        | 2.6 | 44        |
| 64 | Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors. Sensors and Actuators B: Chemical, 2008, 132, 191-195.                                                                                | 4.0 | 43        |
| 65 | Core–shell CNT–Ni–Si nanowires as a high performance anode material for lithium ion batteries.<br>Carbon, 2013, 63, 54-60.                                                                                               | 5.4 | 41        |
| 66 | Enhanced Performance of an Electric Double Layer Microsupercapacitor Based on Novel Carbon-Encapsulated Cu Nanowire Network Structure As the Electrode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40481-40489. | 4.0 | 40        |
| 67 | Advances of Nonlinear Photonics in Lowâ€Dimensional Halide Perovskites. Small, 2021, 17, e2100809.                                                                                                                       | 5.2 | 39        |
| 68 | Single-Walled Carbon Nanotube Based Real-Time Organophosphate Detector. Electroanalysis, 2007, 19, 616-619.                                                                                                              | 1.5 | 38        |
| 69 | Rechargeable lithium battery based on a single hexagonal tungsten trioxide nanowire. Nano Energy, 2012, 1, 172-175.                                                                                                      | 8.2 | 38        |
| 70 | Carbon Nanotube Driver Circuit for 6 $\tilde{A}$ — 6 Organic Light Emitting Diode Display. Scientific Reports, 2015, 5, 11755.                                                                                           | 1.6 | 38        |
| 71 | A highly sensitive, highly transparent, gel-gated MoS <sub>2</sub> phototransistor on biodegradable nanopaper. Nanoscale, 2016, 8, 14237-14242.                                                                          | 2.8 | 38        |
| 72 | Pumping electrons from chemical potential difference. Nano Energy, 2018, 51, 698-703.                                                                                                                                    | 8.2 | 38        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Photoconductive Micro/Nanoscale Interfaces of a Semiconducting Polymer for Wireless Stimulation of Neuron-Like Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4833-4841.                     | 4.0  | 37        |
| 74 | Scalable and Effective Enrichment of Semiconducting Single-Walled Carbon Nanotubes by a Dual Selective Naphthalene-Based Azo Dispersant. Journal of the American Chemical Society, 2013, 135, 5569-5581. | 6.6  | 36        |
| 75 | Inkjet printing of oxide thin film transistor arrays with small spacing with polymer-doped metal nitrate aqueous ink. Journal of Materials Chemistry C, 2017, 5, 7495-7503.                              | 2.7  | 36        |
| 76 | Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity. ACS Photonics, 2020, 7, 327-337.                                                                                | 3.2  | 36        |
| 77 | Functionalized horizontally aligned CNT array and random CNT network for CO2 sensing. Carbon, 2017, 117, 263-270.                                                                                        | 5.4  | 35        |
| 78 | Unique Carbon-Nanotube Field-Effect Transistors with Asymmetric Source and Drain Contacts. Nano Letters, 2008, 8, 64-68.                                                                                 | 4.5  | 33        |
| 79 | Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes.<br>Carbon, 2014, 77, 551-559.                                                                              | 5.4  | 33        |
| 80 | Ultraâ€ŧhin and Flat Mica as Gate Dielectric Layers. Small, 2012, 8, 2178-2183.                                                                                                                          | 5.2  | 31        |
| 81 | Strain-Modulated Photoelectric Responses from a Flexible $\hat{l}\pm -\ln 2Se3/3R$ MoS2 Heterojunction. Nano-Micro Letters, 2021, 13, 74.                                                                | 14.4 | 31        |
| 82 | Solvent Recrystallizationâ€Enabled Green Amplified Spontaneous Emissions with an Ultra‣ow Threshold from Pinholeâ€Free Perovskite Films. Advanced Functional Materials, 2021, 31, 2106108.               | 7.8  | 31        |
| 83 | Influence of oxygen on the thermal stability of amorphous hydrogenated carbon films. Journal of Applied Physics, 1998, 83, 1349-1353.                                                                    | 1.1  | 30        |
| 84 | Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method. Nanotechnology, 2006, 17, 5696-5701.                | 1.3  | 30        |
| 85 | Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Research, 2019, 12, 1619-1624.                                                                                            | 5.8  | 30        |
| 86 | Study of hydrogenated diamond-like carbon films using x-ray reflectivity. Journal of Applied Physics, 1999, 86, 289-296.                                                                                 | 1.1  | 29        |
| 87 | Aligned single-walled carbon nanotube patterns with nanoscale width, micron-scale length and controllable pitch. Nanotechnology, 2007, 18, 455302.                                                       | 1.3  | 29        |
| 88 | Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine. Applied Physics Letters, $2015,107,100$                                                                 | 1.5  | 28        |
| 89 | Transfer Printing of Submicrometer Patterns of Aligned Carbon Nanotubes onto Functionalized Electrodes. Small, 2007, 3, 616-621.                                                                         | 5.2  | 27        |
| 90 | Superâ€Clear Nanopaper from Agroâ€Industrial Waste for Green Electronics. Advanced Electronic Materials, 2017, 3, 1600539.                                                                               | 2.6  | 27        |

| #   | Article                                                                                                                                                                                                                                                                                      | IF          | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 91  | Novel silicon–nickel cone arrays for high performance LIB anodes. Journal of Materials Chemistry, 2012, 22, 20870.                                                                                                                                                                           | 6.7         | 26        |
| 92  | Homologous Bromides Treatment for Improving the Openâ€Circuit Voltage of Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106280.                                                                                                                                                     | 11.1        | 26        |
| 93  | Study of diamond-like carbon films on LiNbO3. Thin Solid Films, 2000, 360, 274-277.                                                                                                                                                                                                          | 0.8         | 25        |
| 94  | Optical properties of nano-crystalline diamond films deposited by MPECVD. Optical Materials, 2003, 24, 509-514.                                                                                                                                                                              | 1.7         | 25        |
| 95  | Complementary Logic Gate Arrays Based on Carbon Nanotube Network Transistors. Small, 2013, 9, 813-819.                                                                                                                                                                                       | 5.2         | 25        |
| 96  | Visualization of structural evolution and phase distribution of a lithium vanadium oxide (Li <sub>1.1</sub> V <sub>3</sub> O <sub>8</sub> ) electrode via an operando and in situ energy dispersive X-ray diffraction technique. Physical Chemistry Chemical Physics, 2017, 19, 14160-14169. | 1.3         | 25        |
| 97  | Realâ€Time Nitrophenol Detection Using Singleâ€Walled Carbon Nanotube Based Devices. Electroanalysis, 2008, 20, 558-562.                                                                                                                                                                     | 1.5         | 24        |
| 98  | Kinetics Studies of Ultralong Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 10896-10900.                                                                                                                                                                       | 1.5         | 24        |
| 99  | Carbeneâ€Functionalized Singleâ€Walled Carbon Nanotubes and Their Electrical Properties. Small, 2011, 7, 1257-1263.                                                                                                                                                                          | <b>5.</b> 2 | 24        |
| 100 | Graphene Field Effect Transistors with Mica as Gate Dielectric Layers. Small, 2014, 10, 4213-4218.                                                                                                                                                                                           | 5.2         | 24        |
| 101 | Sonochemistry-enabled uniform coupling of SnO <sub>2</sub> nanocrystals with graphene sheets as anode materials for lithium-ion batteries. RSC Advances, 2019, 9, 5942-5947.                                                                                                                 | 1.7         | 24        |
| 102 | Matrix Manipulation of Directlyâ€Synthesized PbS Quantum Dot Inks Enabled by Coordination Engineering. Advanced Functional Materials, 2021, 31, 2104457.                                                                                                                                     | 7.8         | 24        |
| 103 | Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination. Nano<br>Letters, 2022, 22, 4347-4353.                                                                                                                                                      | 4.5         | 24        |
| 104 | Carbon-nanotube-based single-electron/hole transistors. Applied Physics Letters, 2006, 88, 013508.                                                                                                                                                                                           | 1.5         | 23        |
| 105 | Controlled Gas Molecules Doping of Monolayer MoS <sub>2</sub> via Atomic-Layer-Deposited Al <sub>2</sub> O <sub>3</sub> Films. ACS Applied Materials & amp; Interfaces, 2017, 9, 27402-27408.                                                                                                | 4.0         | 23        |
| 106 | Fabrication of Carbon Nanotube Field-Effect Transistors by Fluidic Alignment Technique. IEEE Nanotechnology Magazine, 2007, 6, 481-484.                                                                                                                                                      | 1.1         | 22        |
| 107 | Transparent Junctionless Electric-Double-Layer Transistors Gated by a Reinforced Chitosan-Based Biopolymer Electrolyte. IEEE Transactions on Electron Devices, 2013, 60, 1951-1957.                                                                                                          | 1.6         | 22        |
| 108 | Optimization of coplanar high rate supercapacitors. Journal of Power Sources, 2016, 315, 1-8.                                                                                                                                                                                                | 4.0         | 22        |

| #   | Article                                                                                                                                                                                                   | IF           | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 109 | Light Soaking of a-Si:H at 77 K. Japanese Journal of Applied Physics, 1993, 32, L371-L374.                                                                                                                | 0.8          | 21        |
| 110 | Metastable-defect generation in hydrogenated amorphous silicon. Physical Review B, 1994, 50, 1551-1556.                                                                                                   | 1.1          | 21        |
| 111 | Influence of Triton X-100 on the characteristics of carbon nanotube field-effect transistors.<br>Nanotechnology, 2006, 17, 668-673.                                                                       | 1.3          | 20        |
| 112 | The Auger process in multilayer WSe <sub>2</sub> crystals. Nanoscale, 2018, 10, 17585-17592.                                                                                                              | 2.8          | 20        |
| 113 | Strong Piezoelectricity in 3Râ€MoS <sub>2</sub> Flakes. Advanced Electronic Materials, 2022, 8, .                                                                                                         | 2.6          | 20        |
| 114 | Recovery Process for Light-Soaked A-Si:H. Materials Research Society Symposia Proceedings, 1994, 336, 269.                                                                                                | 0.1          | 19        |
| 115 | Simulation of carbon nanotube based p–n junction diodes. Carbon, 2006, 44, 3087-3090.                                                                                                                     | 5 <b>.</b> 4 | 19        |
| 116 | Boosting the electrocatalytic activity of amorphous molybdenum sulfide nanoflakes <i>via</i> nickel sulfide decoration. Nanoscale, 2019, 11, 22971-22979.                                                 | 2.8          | 19        |
| 117 | Enabling Atomicâ€Scale Imaging of Sensitive Potassium Metal and Related Solid Electrolyte Interphases<br>Using Ultralowâ€Dose Cryoâ€₹EM. Advanced Materials, 2021, 33, e2102666.                          | 11.1         | 19        |
| 118 | Memory effects of carbon nanotube-based field effect transistors. Diamond and Related Materials, 2004, 13, 1967-1970.                                                                                     | 1.8          | 18        |
| 119 | Simulation of ambipolar-to-unipolar conversion of carbon nanotube based field effect transistors. Nanotechnology, 2005, 16, 1415-1418.                                                                    | 1.3          | 18        |
| 120 | Large scale low cost fabrication of diameter controllable silicon nanowire arrays. Nanotechnology, 2014, 25, 255302.                                                                                      | 1.3          | 18        |
| 121 | Bi-functional electrode for UV detector and supercapacitor. Nano Energy, 2015, 15, 445-452.                                                                                                               | 8.2          | 18        |
| 122 | Unravelling high volumetric capacity of Co <sub>3</sub> O <sub>4</sub> nanograin-interconnected secondary particles for lithium-ion battery anodes. Journal of Materials Chemistry A, 2021, 9, 6242-6251. | 5.2          | 18        |
| 123 | The effects of nitrogen flow on the Raman spectra of polycrystalline diamond films.<br>Microelectronics Journal, 1998, 29, 875-879.                                                                       | 1.1          | 17        |
| 124 | Room-temperature negative differential conductance in carbon nanotubes. Carbon, 2005, 43, 667-670.                                                                                                        | 5 <b>.</b> 4 | 17        |
| 125 | Giant Persistent Photoconductivity of the WO3 Nanowires in Vacuum Condition. Nanoscale Research Letters, 2011, 6, 52.                                                                                     | 3.1          | 17        |
| 126 | Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Applied Physics Letters, 2010, 96, 043501.                                                                                           | 1.5          | 17        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film. Nanotechnology, 2014, 25, 065301.                                                                | 1.3 | 17        |
| 128 | Stable cyclic performance of nickel oxide–carbon composite anode for lithium-ion batteries. Thin Solid Films, 2014, 558, 356-364.                                                                                  | 0.8 | 17        |
| 129 | On-chip surface modified nanostructured ZnO as functional pH sensors. Nanotechnology, 2015, 26, 355202.                                                                                                            | 1.3 | 17        |
| 130 | Optical-reconfigurable carbon nanotube and indium-tin-oxide complementary thin-film transistor logic gates. Nanoscale, 2018, 10, 13122-13129.                                                                      | 2.8 | 17        |
| 131 | Optically Modulated HfS <sub>2</sub> -Based Synapses for Artificial Vision Systems. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50132-50140.                                                               | 4.0 | 17        |
| 132 | Study of well adherent DLC film deposited on piezoelectric LiTaO3 substrate. Applied Surface Science, 2005, 239, 255-258.                                                                                          | 3.1 | 16        |
| 133 | Roles of inter-SWCNT junctions in resistive humidity response. Nanotechnology, 2015, 26, 455501.                                                                                                                   | 1.3 | 16        |
| 134 | Influences of annealing on lithium-ion storage performance of thick germanium film anodes. Nano Energy, 2015, 12, 521-527.                                                                                         | 8.2 | 16        |
| 135 | Synergistic effect of solvent and solid additives on morphology optimization for high-performance organic solar cells. Science China Chemistry, 2021, 64, 2017-2024.                                               | 4.2 | 16        |
| 136 | Correlation between adhesion of diamond-like carbon film on LiTaO3 substrate and SAW velocity. Surface and Coatings Technology, 2005, 198, 198-201.                                                                | 2.2 | 15        |
| 137 | Giant Humidity Response Using a Chitosan-Based Protonic Conductive Sensor. IEEE Sensors Journal, 2016, 16, 8884-8889.                                                                                              | 2.4 | 15        |
| 138 | Current degradation mechanism of tip contact metal-silicon Schottky nanogenerator. Nano Energy, 2022, 94, 106888.                                                                                                  | 8.2 | 15        |
| 139 | High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank<br>Structure. ACS Applied Materials & Dynamor (1988) 10, 15847-15854.                                             | 4.0 | 14        |
| 140 | Low excitation of Raman D-band in [2+1] cycloaddition functionalized single-walled carbon nanotubes. Carbon, 2018, 138, 188-196.                                                                                   | 5.4 | 14        |
| 141 | Structural Stability and Amorphization Transition in the Ni–Ti System Studied by Molecular Dynamics Simulation with an n-Body Potential. Journal of the Physical Society of Japan, 2000, 69, 2923-2937.            | 0.7 | 13        |
| 142 | Correlation between in Situ Raman Scattering and Electrical Conductance for an Individual Double-Walled Carbon Nanotube. Nano Letters, 2009, 9, 383-387.                                                           | 4.5 | 13        |
| 143 | Nanoscale Contacts between Carbon Nanotubes and Metallic Pads. ACS Nano, 2009, 3, 4117-4121.                                                                                                                       | 7.3 | 13        |
| 144 | Selective Small-Diameter Metallic Single-Walled Carbon Nanotube Removal by Mere Standing with Anthraquinone and Application to a Field-Effect Transistor. Journal of Physical Chemistry C, 2010, 114, 21035-21041. | 1.5 | 13        |

| #   | Article                                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Diameter Effect on the Sidewall Functionalization of Singleâ€Walled Carbon Nanotubes by Addition of Dichlorocarbene. Advanced Functional Materials, 2012, 22, 5216-5223.                                                                                                                                                      | 7.8 | 13        |
| 146 | In-situ Functionalization of Metal Electrodes for Advanced Asymmetric Supercapacitors. Frontiers in Chemistry, 2019, 7, 512.                                                                                                                                                                                                  | 1.8 | 12        |
| 147 | Photobleaching of light-induced paramagnetic defects in fast and slow processes ina-Si1â^'xNx:H alloys. Physical Review B, 1995, 51, 2137-2142.                                                                                                                                                                               | 1.1 | 11        |
| 148 | Influence of light soaking on surface―and bulkâ€spin densities in hydrogenated amorphous silicon.<br>Journal of Applied Physics, 1995, 78, 1230-1234.                                                                                                                                                                         | 1.1 | 11        |
| 149 | Electron field emission from polycrystalline diamond films. Journal of Materials Research, 2000, 15, 212-217.                                                                                                                                                                                                                 | 1.2 | 11        |
| 150 | Speeding-up effects of hard carbon films on surface acoustic wave on crystalline quartz. Thin Solid Films, 2001, 397, 276-279.                                                                                                                                                                                                | 0.8 | 11        |
| 151 | Current instability of carbon nanotube field effect transistors. Nanotechnology, 2007, 18, 424035.                                                                                                                                                                                                                            | 1.3 | 11        |
| 152 | Hysteretic transfer characteristics of double-walled and single-walled carbon nanotube field-effect transistors. Applied Physics Letters, 2007, 91, 143118.                                                                                                                                                                   | 1.5 | 11        |
| 153 | Covalently Functionalized Metallic Single-Walled Carbon Nanotubes Studied Using Electrostatic Force Microscopy and Dielectric Force Microscopy. Journal of Physical Chemistry C, 2013, 117, 24570-24578.                                                                                                                      | 1.5 | 11        |
| 154 | Influences of surface charges and gap width between p-type and n-type semiconductors on charge pumping. Nano Energy, 2020, 78, 105287.                                                                                                                                                                                        | 8.2 | 11        |
| 155 | Room-temperature Near-infrared Excitonic Lasing from Mechanically Exfoliated InSe Microflake. ACS<br>Nano, 2022, 16, 1477-1485.                                                                                                                                                                                               | 7.3 | 11        |
| 156 | Engineering Near-Infrared Light Emission in Mechanically Exfoliated InSe Platelets through Hydrostatic Pressure for Multicolor Microlasing. Nano Letters, 2022, 22, 3840-3847.                                                                                                                                                | 4.5 | 11        |
| 157 | Erosion resistance of polycrystalline diamond films to atomic oxygen. Carbon, 2003, 41, 1847-1850.                                                                                                                                                                                                                            | 5.4 | 10        |
| 158 | High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask. Nanotechnology, 2007, 18, 355307.                                                                                                                                                                  | 1.3 | 10        |
| 159 | Growth and electron field emission characteristics of nanodiamond films deposited in N[sub 2]/CH[sub 4]/H[sub 2] microwave plasma-enhanced chemical vapor deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1982. | 1.6 | 9         |
| 160 | Global and local charge trapping in carbon nanotube field-effect transistors. Nanotechnology, 2008, 19, 175203.                                                                                                                                                                                                               | 1.3 | 9         |
| 161 | Influence of Light-Soaking Temperature on the Distribution of Thermal-Annealing Activation Energies for Photocreated Dangling Bonds in Hydrogenated Amorphous Silicon. Japanese Journal of Applied Physics, 1995, 34, 5933-5942.                                                                                              | 0.8 | 9         |
| 162 | Advances and Frontiers in Singleâ€Walled Carbon Nanotube Electronics. Advanced Science, 2021, 8, e2102860.                                                                                                                                                                                                                    | 5.6 | 9         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | The role of nitrogen in the deposition of polycrystalline diamond films. Diamond and Related Materials, 1999, 8, 215-219.                                                                           | 1.8 | 8         |
| 164 | Structural modification of polymeric amorphous hydrogenated carbon films induced by high energetic He+ irradiation and thermal annealing. Diamond and Related Materials, 2000, 9, 1758-1761.        | 1.8 | 8         |
| 165 | Reaction of diamond thin films with atomic oxygen simulated as low-earth-orbit environment. Journal of Applied Physics, 2002, 92, 6275-6277.                                                        | 1.1 | 8         |
| 166 | Motion of Carbon Nanotubes in suspension under AC electric field. International Journal of Nanomanufacturing, 2008, 2, 50.                                                                          | 0.3 | 8         |
| 167 | Pattern-Selective Molecular Epitaxial Growth of Single-Crystalline Perovskite Arrays toward Ultrasensitive and Ultrafast Photodetector. Nano Letters, 2022, 22, 2948-2955.                          | 4.5 | 8         |
| 168 | Study of gaseous interactions in carbon nanotube field-effect transistors through selective Si3N4passivation. Nanotechnology, 2008, 19, 465201.                                                     | 1.3 | 7         |
| 169 | Tunable ambipolar Coulomb blockade characteristics in carbon nanotubes-gated carbon nanotube field-effect transistors. Applied Physics Letters, 2009, 94, 022101.                                   | 1.5 | 7         |
| 170 | Selfâ€Aligned Subâ€10â€nm Nanogap Electrode Array for Largeâ€Scale Integration. Small, 2011, 7, 2195-2200.                                                                                          | 5.2 | 7         |
| 171 | Raman Signatures of Broken C–C Bonds in Single-Walled Carbon Nanotubes upon [2 + 1]<br>Cycloaddition. Journal of Physical Chemistry C, 2015, 119, 18753-18761.                                      | 1.5 | 7         |
| 172 | Influences of water molecules on the electronic properties of atomically thin molybdenum disulfide. Applied Physics Letters, 2017, 111, .                                                           | 1.5 | 7         |
| 173 | Carbon Nanotubes for Electrochemical and Electronic Biosensing Applications. , 2009, , 205-246.                                                                                                     |     | 7         |
| 174 | Tunable Multiâ€Bit Nonvolatile Memory Based on Ferroelectric Fieldâ€Effect Transistors. Advanced Electronic Materials, 2022, 8, .                                                                   | 2.6 | 7         |
| 175 | Interpretation of Coulomb oscillations in carbon-nanotube-based field-effect transistors. Physical Review B, 2006, 73, .                                                                            | 1.1 | 6         |
| 176 | Chemical Gas Sensor Based on a Flexible Capacitive Microwave Transducer Associated with a Sensitive Carbon Composite Polymer Film. Proceedings (mdpi), 2017, 1, 439.                                | 0.2 | 6         |
| 177 | Ultrafast Antisolvent Growth of Single-Crystalline CsPbCl <sub>3</sub> Microcavity for Low-Threshold Room Temperature Blue Lasing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21356-21362. | 4.0 | 6         |
| 178 | Chemically induced air- stable unipolar-to-ambipolar conversion of carbon nanotube field effect transistors. Chemical Physics Letters, 2009, 470, 95-98.                                            | 1.2 | 5         |
| 179 | A molecular quantum wire of linear carbon chains encapsulated within single-walled carbon nanotube (Cn@SWNT). Journal of Applied Physics, 2011, 109, 016108.                                        | 1.1 | 5         |
| 180 | Applications of Carbon Nanotubes in CFx Electrodes for High-power Li/CFx Batteries. MRS Advances, 2016, 1, 403-408.                                                                                 | 0.5 | 5         |

| #   | Article                                                                                                                                                                                                 | IF   | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Probing atomic structure of beam-sensitive energy materials in their native states using cryogenic transmission electron microscopes. IScience, 2021, 24, 103385.                                       | 1.9  | 5         |
| 182 | Simultaneous Fabrication of Very High Aspect Ratio Positive Nano- to Milliscale Structures. Small, 2009, 5, 1043-1050.                                                                                  | 5.2  | 4         |
| 183 | Self-Built Tensile Strain in Large Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 992-998.                                                                                                          | 7.3  | 4         |
| 184 | Causes of asymmetry in graphene transfer characteristics. , 2010, , .                                                                                                                                   |      | 4         |
| 185 | Piperidine induced polarity conversion in single-walled carbon nanotube field effect transistors.<br>Nanotechnology, 2011, 22, 245306.                                                                  | 1.3  | 4         |
| 186 | Layered Nanomaterials: Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature (Small $1/2012$ ). Small, $2012$ , $8$ , $2-2$ .               | 5.2  | 4         |
| 187 | Chemical sensor based on a novel capacitive microwave flexible transducer with polymer nanocomposite-carbon nanotube sensitive film. Microsystem Technologies, 2018, , 1.                               | 1.2  | 4         |
| 188 | Photocreated neutral dangling bonds in N-doped and undoped a-Si:H films. Journal of Non-Crystalline Solids, 1996, 198-200, 495-498.                                                                     | 1.5  | 3         |
| 189 | ANNEALING EFFECTS ON ELECTRIC CONTACTS BETWEEN CARBON NANOTUBES AND ELECTRODES. International Journal of Nanoscience, 2006, 05, 401-406.                                                                | 0.4  | 3         |
| 190 | A Comprehensive Study of Cobalt Salicide-Induced SRAM Leakage for 90-nm CMOS Technology. IEEE Transactions on Electron Devices, 2007, 54, 2730-2737.                                                    | 1.6  | 3         |
| 191 | Theoretical study of the performance for short channel carbon nanotube transistors with asymmetric contacts. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6940-6943. | 0.9  | 3         |
| 192 | The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area. Nanotechnology, 2008, 19, 155301. | 1.3  | 3         |
| 193 | Carbon nanotube field-effect transistors functionalized with self-assembly gold nanocrystals. Nanotechnology, 2010, 21, 095202.                                                                         | 1.3  | 3         |
| 194 | Influence of contact height on the performance of vertically aligned carbon nanotube field-effect transistors. Nanoscale, 2013, 5, 2476.                                                                | 2.8  | 3         |
| 195 | Nanocarbon Paper: Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon<br>Paper (Adv. Mater. 23/2016). Advanced Materials, 2016, 28, 4566-4566.                            | 11.1 | 3         |
| 196 | Influence of an inhomogeneous spatial distribution of defects on the constant photocurrent method. Journal of Applied Physics, 1997, 81, 6795-6799.                                                     | 1.1  | 2         |
| 197 | Hydrogen motion and stretched-exponential relaxation in a-Si:H. Journal of Physics Condensed Matter, 1998, 10, 5897-5904.                                                                               | 0.7  | 2         |
| 198 | CHARGE STORAGE IN CARBON NANOTUBE FIELD-EFFECT TRANSISTORS. International Journal of Nanoscience, 2006, 05, 553-557.                                                                                    | 0.4  | 2         |

| #   | Article                                                                                                                                                                                      | IF  | Citations |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Roles of Semiconductor Junctions in Mechanical-Electrical Power Conversion. , 2020, , .                                                                                                      |     | 2         |
| 200 | Edge Raman enhancement at layered PbI <sub>2</sub> platelets induced by laser waveguide effect. Nanotechnology, 2022, 33, 035203.                                                            | 1.3 | 2         |
| 201 | Origin of Photodegradation in a-Si:H - Bond Breaking or Charge Trapplng?. Materials Research Society Symposia Proceedings, 1995, 377, 239.                                                   | 0.1 | 1         |
| 202 | Electrical transport in carbon nanotube intermolecular p-n junctions., 2011,,.                                                                                                               |     | 1         |
| 203 | A Nano-Filter-Integrated CMOS Image Sensor for Fluorescent Biomedical Imaging. , 2018, , .                                                                                                   |     | 1         |
| 204 | Recovery Process of Light-Induced Spins in Hydrogenated Amorphous Silicon-Nitrogen Alloy Films. Materials Research Society Symposia Proceedings, 1995, 377, 367.                             | 0.1 | 0         |
| 205 | Carbon Networks Synthesized using Microwave Plasma Enhanced Chemical Vapor Deposition.<br>Materials Research Society Symposia Proceedings, 2001, 706, 1.                                     | 0.1 | 0         |
| 206 | Low Potential Stable Glucose Detection at Carbon Nanotube Modified Gold Electrodes. Materials Research Society Symposia Proceedings, 2003, 788, 3461.                                        | 0.1 | 0         |
| 207 | The Effects of Catalyst Grain Sizes on the Diameter of MPECVD Grown Patterned Carbon Nanotubes.<br>Materials Research Society Symposia Proceedings, 2003, 772, 351.                          | 0.1 | 0         |
| 208 | FABRICATION OF CARBON NANOTUBE FIELD EFFECT TRANSISTORS WITH OCMC DISPERSED SINGLE-WALLED CARBON NANOTUBES. International Journal of Nanoscience, 2010, 09, 377-381.                         | 0.4 | 0         |
| 209 | Single-Walled Carbon Nanotubes based sensors and amplifier circuit integrated on flexible substrates. , 2016, , .                                                                            |     | 0         |
| 210 | Advanced vertically aligned carbon nanotube based energy storage devices. , 2016, , .                                                                                                        |     | 0         |
| 211 | The Importance of Combined Spatio-Temporal Characterization: From in situ to operando Diffraction Measurements of Li/Li1.1V3O8 Batteries. Microscopy and Microanalysis, 2018, 24, 1478-1479. | 0.2 | 0         |
| 212 | Single-Wall Carbon Nanotube-Based Transparent and Conductive Films. , 2012, , .                                                                                                              |     | 0         |