Anna Rita Franco Migliaccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3666708/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resident Self-Tissue of Proinflammatory Cytokines Rather Than Their Systemic Levels Correlates with Development of Myelofibrosis in Gata1low Mice. Biomolecules, 2022, 12, 234.	4.0	6
2	The CXCR1/CXCR2 Inhibitor Reparixin Alters the Development of Myelofibrosis in the Gata1low Mice. Frontiers in Oncology, 2022, 12, 853484.	2.8	7
3	Evolution and new frontiers of histology in bioâ€medical research. Microscopy Research and Technique, 2021, 84, 217-237.	2.2	13
4	An Outline of the Outset of Thrombopoiesis in Human Embryos At Last. Cell Stem Cell, 2021, 28, 363-365.	11.1	4
5	The Role of Megakaryocytes in Myelofibrosis. Hematology/Oncology Clinics of North America, 2021, 35, 191-203.	2.2	13
6	TGF- \hat{l}^21 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis. JCI Insight, 2021, 6, .	5.0	31
7	Role of \hat{I}^21 integrin in thrombocytopoiesis. Faculty Reviews, 2021, 10, 68.	3.9	4
8	hGATA1 Under the Control of a μLCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced by the Gata1low Mutation in Mice. Frontiers in Genetics, 2021, 12, 720552.	2.3	1
9	The Clucocorticoid Receptor Polymorphism Landscape in Patients With Diamond Blackfan Anemia Reveals an Association Between Two Clinically Relevant Single Nucleotide Polymorphisms and Time to Diagnosis. Frontiers in Physiology, 2021, 12, 745032.	2.8	3
10	The Glucocorticoid Receptor-Dependent Stress Response in Human Erythropoiesis Is BCL11A-Dependent. Blood, 2021, 138, 939-939.	1.4	0
11	The CXCL1 Inhibitor Reparixin Rescues Myelofibrosis in the <i>Gata1</i> low Model of the Disease. Blood, 2021, 138, 3579-3579.	1.4	1
12	A Novel Megakaryocyte Subpopulation Poised to Exert the Function of HSC Niche as Possible Driver of Myelofibrosis. Cells, 2021, 10, 3302.	4.1	2
13	Treatment of Myelofibrosis Patients with the TGF-β 1/3 Inhibitor AVID200 (MPN-RC 118) Induces a Profound Effect on Platelet Production. Blood, 2021, 138, 142-142.	1.4	10
14	Novel targets to cure primary myelofibrosis from studies on <i>Gata1</i> ^{low} mice. IUBMB Life, 2020, 72, 131-141.	3.4	5
15	Shared and Distinctive Ultrastructural Abnormalities Expressed by Megakaryocytes in Bone Marrow and Spleen From Patients With Myelofibrosis. Frontiers in Oncology, 2020, 10, 584541.	2.8	4
16	GATA1 gets personal. Haematologica, 2020, 105, 852-854.	3.5	0
17	Preclinical Rationale for the Use of Crizanlizumab (SEG101) in Myelofibrosis. Blood, 2020, 136, 26-27.	1.4	3
18	Rationale for and Results of a Phase I Study of the TGF-β 1/3 Inhibitor AVID200 in Subjects with Myelofibrosis: MPN-RC 118 Trial. Blood, 2020, 136, 6-8.	1.4	8

#	Article	IF	CITATIONS
19	Inhibition of P-Selectin Rescues the Phenotype of a Novel Genetic Animal Model for Idiopathic Pulmonary Fibrosis. Blood, 2020, 136, 29-29.	1.4	0
20	Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia. Experimental Hematology, 2019, 79, 16-25.e3.	0.4	8
21	Genetic disarray follows mutant KLF1-E325K expression in a congenital dyserythropoietic anemia patient. Haematologica, 2019, 104, 2372-2380.	3.5	17
22	Dexamethasone Predisposes Human Erythroblasts Toward Impaired Lipid Metabolism and Renders Their ex vivo Expansion Highly Dependent on Plasma Lipoproteins. Frontiers in Physiology, 2019, 10, 281.	2.8	11
23	Phosphoproteomic Landscaping Identifies Non-canonical cKIT Signaling in Polycythemia Vera Erythroid Progenitors. Frontiers in Oncology, 2019, 9, 1245.	2.8	6
24	Novel strategies for the treatment of myelofibrosis driven by recent advances in understanding the role of the microenvironment in its etiology. F1000Research, 2019, 8, 1662.	1.6	14
25	Altered Megakaryocytes Are Associated with Development of Pulmonary Fibrosis in Mice Carrying the Hypomorphic Gata1low Mutation. Blood, 2019, 134, 2336-2336.	1.4	1
26	GATA1 insufficiencies in primary myelofibrosis and other hematopoietic disorders: consequences for therapy. Expert Review of Hematology, 2018, 11, 169-184.	2.2	28
27	Dissecting physical structure of calreticulin, an intrinsically disordered Ca ²⁺ -buffering chaperone from endoplasmic reticulum. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1617-1636.	3.5	14
28	A vicious interplay between genetic and environmental insults in the etiology of blood cancers. Experimental Hematology, 2018, 59, 9-13.	0.4	4
29	Concise Review: Advanced Cell Culture Models for Diamond Blackfan Anemia and Other Erythroid Disorders. Stem Cells, 2018, 36, 172-179.	3.2	17
30	Megakaryocyte contribution to bone marrow fibrosis: many arrows in the quiver. Mediterranean Journal of Hematology and Infectious Diseases, 2018, 10, e2018068.	1.3	40
31	Biology of Erythropoiesis, Erythroid Differentiation, and Maturation. , 2018, , 297-320.e14.		3
32	Whirling Platelets Away for Transfusion. Cell, 2018, 174, 503-504.	28.9	5
33	Remembering Ihor Lemischka—The scientist's scientist. Experimental Hematology, 2018, 58, 1-4.	0.4	0
34	AVID200, a Potent Trap for TGF-β Ligands Inhibits TGF-β1 Signaling in Human Myelofibrosis. Blood, 2018, 132, 1791-1791.	1.4	16
35	The Hypomorphic Gata1low Mutation Induces Fibrosis in Multiple Organs. Blood, 2018, 132, 3059-3059.	1.4	0
36	Human GATA1 Driven By the Human Μicro LCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced in Mice By the Gata1low Mutation. Blood, 2018, 132, 1042-1042.	1.4	0

#	Article	IF	CITATIONS
37	The Calreticulin control of human stress erythropoiesis is impaired by JAK2V617F in polycythemia vera. Experimental Hematology, 2017, 50, 53-76.	0.4	12
38	The thrombopoietin/MPL axis is activated in the Gata1low mouse model of myelofibrosis and is associated with a defective RPS14 signature. Blood Cancer Journal, 2017, 7, e572-e572.	6.2	23
39	Activation of non-canonical cKIT signalling in erythroid progenitor cells from polycythemia vera. Experimental Hematology, 2017, 53, S77-S78.	0.4	0
40	Miss Piggy on the catwalk again. Blood, 2017, 130, 2153-2154.	1.4	0
41	Calreticulin: Challenges Posed by the Intrinsically Disordered Nature of Calreticulin to the Study of Its Function. Frontiers in Cell and Developmental Biology, 2017, 5, 96.	3.7	22
42	Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis. Journal of Clinical Investigation, 2017, 127, 1316-1320.	8.2	65
43	To condition or not to condition—That is the question: The evolution ofÂnonmyeloablative conditions for transplantation. Experimental Hematology, 2016, 44, 706-712.	0.4	5
44	Forever young: 44Âyears old and still going strong. Experimental Hematology, 2016, 44, 641-643.	0.4	0
45	CALR resets the stress-response of erythroid cells and this function is impaired by CALR and JAK2 mutations alike in MPN. Experimental Hematology, 2016, 44, S70.	0.4	0
46	P-Selectin Sustains Extramedullary Hematopoiesis in the <i>G ata1low</i> Model of Myelofibrosis. Stem Cells, 2016, 34, 67-82.	3.2	31
47	Preclinical rationale for TGF-β inhibition as a therapeutic target for the treatment of myelofibrosis. Experimental Hematology, 2016, 44, 1138-1155.e4.	0.4	38
48	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
49	Phosphoproteomic Landscaping Unveils Constitutive cKIT Activation in Human Erythroblasts from Polycythemia Vera (PV) Patients. Blood, 2016, 128, 399-399.	1.4	0
50	The Carboxy-Terminal Domain of Calreticulin (CALR) Exports the Glucocorticoid Receptor (GR) from the Nucleus to the Cytoplasm of Human Erythroid Cells Resetting Their Stress Response. Blood, 2016, 128, 545-545.	1.4	0
51	Special Issue Collection: In Memoriam. Stem Cells, 2015, 33, 3397-3422.	3.2	0
52	Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica, 2015, 100, 178-187.	3.5	59
53	Activation of non-canonical TGF-β1 signaling indicates an autoimmune mechanism for bone marrow fibrosis in primary myelofibrosis. Blood Cells, Molecules, and Diseases, 2015, 54, 234-241.	1.4	31

#	Article	IF	CITATIONS
55	2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment. Blood, 2015, 126, 89-93.	1.4	62
56	CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield. Haematologica, 2015, 100, 1396-1406.	3.5	52
57	Glucocorticoid Regulation of Erythropoiesis in Humans: A Study of Patients with Cushing's Disease. Blood, 2015, 126, 2135-2135.	1.4	1
58	An Inhibitor of TGF-β Promotes Proliferation of Normal but Not MPN Hematopoietic Cells and Is a Candidate Therapeutic Agent for the Treatment of MPN Patients Carrying JAK2 V617F or Calr pQ365fs Mutations. Blood, 2015, 126, 4089-4089.	1.4	0
59	The JAK2 V617F Mutation Disrupts the Regulatory Activity Exerted By Calreticulin on the Glucocorticoid Receptor in Erythroid Cells. Blood, 2015, 126, 5216-5216.	1.4	Ο
60	A novel interaction between megakaryocytes and activated fibrocytes increases TGF-β bioavailability in the Gata1(low) mouse model of myelofibrosis. American Journal of Blood Research, 2015, 5, 34-61.	0.6	14
61	Abnormal P-selectin localization during megakaryocyte development determines thrombosis in the gata1low model of myelofibrosis. Platelets, 2014, 25, 539-547.	2.3	14
62	Mononuclear cells from a rare blood donor, after freezing under good manufacturing practice conditions, generate red blood cells that recapitulate the rare blood phenotype. Transfusion, 2014, 54, 1059-1070.	1.6	15
63	Identification of NuRSERY, a new functional HDAC complex composed by HDAC5, GATA1, EKLF and pERK present in human erythroid cells. International Journal of Biochemistry and Cell Biology, 2014, 50, 112-122.	2.8	23
64	The Lombardy Rare Donor Programme. Blood Transfusion, 2014, 12 Suppl 1, s249-55.	0.4	5
65	Transfusion-independent β(0)-thalassemia after bone marrow transplantation failure: proposed involvement of high parental HbF and an epigenetic mechanism. American Journal of Blood Research, 2014, 4, 27-32.	0.6	6
66	The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis. American Journal of Blood Research, 2014, 4, 53-72.	0.6	10
67	Stem cellâ€derived erythrocytes as upcoming players in blood transfusion. ISBT Science Series, 2013, 8, 165-171.	1.1	2
68	Transcriptomic and phosphoâ€proteomic analyzes of erythroblasts expanded <i>in vitro</i> from normal donors and from patients with polycythemia vera. American Journal of Hematology, 2013, 88, 723-729.	4.1	32
69	Characterization of the TGF-β1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood, 2013, 121, 3345-3363.	1.4	86
70	A niche for every cell, for every function. Haematologica, 2013, 98, 1660-1663.	3.5	7
71	The Making Of "Erythroid Islands―In HEMA Culture. Blood, 2013, 122, 939-939.	1.4	0
72	Ex Vivo Generated Red Cells as Transfusion Products. Stem Cells International, 2012, 2012, 1-2.	2.5	3

#	Article	IF	CITATIONS
73	The Expression of the Glucocorticoid Receptor in Human Erythroblasts is Uniquely Regulated by KIT Ligand: Implications for Stress Erythropoiesis. Stem Cells and Development, 2012, 21, 2852-2865.	2.1	26
74	The Potential of Stem Cells as an InÂVitro Source of Red Blood Cells for Transfusion. Cell Stem Cell, 2012, 10, 115-119.	11.1	69
75	Ex-vivo expansion of red blood cells: How real for transfusion in humans?. Blood Reviews, 2012, 26, 81-95.	5.7	47
76	A3669G polymorphism of glucocorticoid receptor is a susceptibility allele for primary myelofibrosis and contributes to phenotypic diversity and blast transformation. Blood, 2012, 120, 3112-3117.	1.4	33
77	Concise Review: Stem Cellâ€Derived Erythrocytes as Upcoming Players in Blood Transfusion. Stem Cells, 2012, 30, 1587-1596.	3.2	56
78	Blood in a dish: in vitro synthesis of red blood cells. Drug Discovery Today Disease Mechanisms, 2011, 8, e3-e8.	0.8	9
79	Under HEMA conditions, self-replication of human erythroblasts is limited by autophagic death. Blood Cells, Molecules, and Diseases, 2011, 47, 182-197.	1.4	35
80	Recovery and Biodistribution ofEx VivoExpanded Human Erythroblasts Injected into NOD/SCID/IL2Rγnullmice. Stem Cells International, 2011, 2011, 1-13.	2.5	14
81	Phenotypic Definition of the Progenitor Cells with Erythroid Differentiation Potential Present in Human Adult Blood. Stem Cells International, 2011, 2011, 1-9.	2.5	16
82	The dominant negative \hat{l}^2 isoform of the glucocorticoid receptor is uniquely expressed in erythroid cells expanded from polycythemia vera patients. Blood, 2011, 118, 425-436.	1.4	47
83	Increased frequency of the glucocorticoid receptor A3669G (rs6198) polymorphism in patients with Diamond-Blackfan anemia. Blood, 2011, 118, 473-474.	1.4	13
84	GATA2 finds its macrophage niche. Blood, 2011, 118, 2647-2649.	1.4	5
85	Control of Megakaryocyte Expansion and Bone Marrow Fibrosis by Lysyl Oxidase. Journal of Biological Chemistry, 2011, 286, 27630-27638.	3.4	78
86	TRANSPLANTATION AND CELLULAR ENGINEERING: Compensated variability in the expression of globinâ€related genes in erythroblasts generated ex vivo from different donors. Transfusion, 2010, 50, 672-684.	1.6	11
87	Humanized Culture Medium for Clinical Expansion of Human Erythroblasts. Cell Transplantation, 2010, 19, 453-469.	2.5	73
88	Getting personal with B19 parvovirus. Blood, 2010, 115, 922-923.	1.4	3
89	Dynamic regulation of Gata1 expression during the maturation of conventional dendritic cells. Experimental Hematology, 2010, 38, 489-503.e1.	0.4	11
90	Evidence for organâ€specific stem cell microenvironments. Journal of Cellular Physiology, 2010, 223, 460-470.	4.1	6

#	Article	IF	CITATIONS
91	CXCR4â€independent rescue of the myeloproliferative defect of the gata1 ^{low} myelofibrosis mouse model by Aplidin®. Journal of Cellular Physiology, 2010, 225, 490-499.	4.1	16
92	Erythroblast enucleation. Haematologica, 2010, 95, 1985-1988.	3.5	38
93	EPO Receptor Gain-of-Function Causes Hereditary Polycythemia, Alters CD34+ Cell Differentiation and Increases Circulating Endothelial Precursors. PLoS ONE, 2010, 5, e12015.	2.5	23
94	Erythropoiesis and the normal red cell. , 2010, , 4368-4374.		11
95	Increased Differentiation of Dermal Mast Cells in Mice Lacking the Mpl Gene. Stem Cells and Development, 2009, 18, 1081-1092.	2.1	3
96	Interaction between the glucocorticoid and erythropoietin receptors inÂhumanÂerythroid cells. Experimental Hematology, 2009, 37, 559-572.	0.4	41
97	NFâ€E2 overexpression delays erythroid maturation and increases erythrocyte production. British Journal of Haematology, 2009, 146, 203-217.	2.5	22
98	Removal of the Spleen in Mice Alters the Cytokine Expression Profile of the Marrow Microâ€environment and Increases Bone Formation. Annals of the New York Academy of Sciences, 2009, 1176, 77-86.	3.8	9
99	TRANSPLANTATION AND CELLULAR ENGINEERING: Longâ€ŧerm storage does not alter functionality of in vitro generated human erythroblasts: implications for ex vivo generated erythroid transfusion products. Transfusion, 2009, 49, 2668-2679.	1.6	5
100	Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis. Expert Review of Hematology, 2009, 2, 315-334.	2.2	26
101	Erythroid cells in vitro: from developmental biology to blood transfusion products. Current Opinion in Hematology, 2009, 16, 259-268.	2.5	57
102	Gata1 expression driven by the alternative HS2 enhancer in the spleen rescues the hematopoietic failure induced by the hypomorphic Gata1low mutation. Blood, 2009, 114, 2107-2120.	1.4	26
103	The Marine Tunicate-Derived Cyclic Depsipeptide Aplidin Restores Functional Hematopoiesis in the Marrow of the Gata1low Mouse Model of Myelofibrosis Blood, 2009, 114, 3914-3914.	1.4	1
104	the Î ³ Isoform of the Glucocorticoid Receptor Is Ontogenetically Activated and Predicts Poor Ex-Vivo Expansion of Erythroid Cells From Adult Blood Blood, 2009, 114, 642-642.	1.4	0
105	The Final Cellular Output in Human Erythroid Massive Amplification Culture (HEMA) Is Determined by Dynamic Interactions Between Immature and Mature Cell Populations Blood, 2009, 114, 3156-3156.	1.4	1
106	Ontogenic-Specific Increasesin HDAC1 Activity and Transcription Factor Association During the Maturation of Human Adult Erythroblasts in Vitro Blood, 2009, 114, 1978-1978.	1.4	0
107	Thrombopoietin Inhibits Murine Mast Cell Differentiation. Stem Cells, 2008, 26, 912-919.	3.2	20
108	Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1low mouse model of the disease. Experimental Hematology, 2008, 36, 158-171.	0.4	50

#	Article	IF	CITATIONS
109	Animal Models of Myelofibrosis. , 2008, , 713-723.		1
110	Histone deacetylase inhibitors and hemoglobin F induction in Î ² -thalassemia. International Journal of Biochemistry and Cell Biology, 2008, 40, 2341-2347.	2.8	14
111	Human Erythroblasts Generated in Vitro Remain Functional with a Normal Karyotype 8 Years after Cryopreservation: Implications for Ex Vivo Generated Erythroid Transfusion Products Blood, 2008, 112, 2303-2303.	1.4	1
112	Dynamic Pattern of Adhesion Receptor Expression during the Maturation of Ex-Vivo Generated Human Adult and Neonatal Erythroid Cells Blood, 2008, 112, 997-997.	1.4	2
113	Aplidin Improves Megakaryocytopoiesis and Halts Neo-Angiogenesis in the Gata1low Murine Model of Myelofibrosis. Blood, 2008, 112, 2787-2787.	1.4	6
114	Identification of Two New Synthetic Histone Deacetylase Inhibitors That Modulate Globin Gene Expression in Erythroid Cells from Healthy Donors and Patients with Thalassemia. Molecular Pharmacology, 2007, 72, 1111-1123.	2.3	30
115	Pericyte coverage of abnormal blood vessels in myelofibrotic bone marrows. Haematologica, 2007, 92, 597-604.	3.5	31
116	The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood, 2007, 109, 1460-1471.	1.4	48
117	To code or not to code. Blood, 2007, 109, 5077-5078.	1.4	0
118	Protein kinase Cα is differentially activated during neonatal and adult erythropoiesis and favors expression of a reporter gene under the control of theAγ globin-promoter in cellular models of hemoglobin switching. Journal of Cellular Biochemistry, 2007, 101, 411-424.	2.6	11
119	Interleukin-3 and erythropoietin cooperate in the regulation of the expression of erythroid-specific transcription factors during erythroid differentiation. Experimental Hematology, 2007, 35, 735-747.	0.4	6
120	Role of Thrombopoietin in Mast Cell Differentiation. Annals of the New York Academy of Sciences, 2007, 1106, 152-174.	3.8	8
121	Molecular Profiling of CD34+Cells in Idiopathic Myelofibrosis Identifies a Set of Disease-Associated Genes and Reveals the Clinical Significance of Wilms' Tumor Gene 1 (WT1). Stem Cells, 2007, 25, 165-173.	3.2	111
122	The return of Romeo. EMBO Reports, 2006, 7, 1067-1071.	4.5	0
123	Differential Amplification of Murine Bipotent Megakaryocytic/Erythroid Progenitor and Precursor Cells During Recovery from Acute and Chronic Erythroid Stress. Stem Cells, 2006, 24, 337-348.	3.2	25
124	The Hypomorphic Gata1low Mutation Alters the Proliferation/Differentiation Potential of the Common Megakaryocytic-Erythroid Progenitor Blood, 2006, 108, 2549-2549.	1.4	1
125	A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-β1 in the development of myelofibrosis. Blood, 2005, 105, 3493-3501.	1.4	103
126	Variegation of the phenotype induced by the Gata1low mutation in mice of different genetic backgrounds. Blood, 2005, 106, 4102-4113.	1.4	32

#	Article	IF	CITATIONS
127	Role of GATA-1 in Normal and Neoplastic Hemopoiesis. Annals of the New York Academy of Sciences, 2005, 1044, 142-158.	3.8	20
128	Pathogenesis of Myelofibrosis With Myeloid Metaplasia: Lessons From Mouse Models of the Disease. Seminars in Oncology, 2005, 32, 365-372.	2.2	13
129	Expression of signal transduction proteins during the differentiation of primary human erythroblasts. Journal of Cellular Physiology, 2005, 202, 831-838.	4.1	35
130	Spontaneous switch from Aγ- to β-globin promoter activity in a stable transfected dual reporter vector. Blood Cells, Molecules, and Diseases, 2005, 34, 174-180.	1.4	5
131	Isolation of TPO-dependent subclones from the multipotent 32D cell line. Blood Cells, Molecules, and Diseases, 2005, 35, 241-252.	1.4	4
132	Abnormalities of GATA-1 in Megakaryocytes from Patients with Idiopathic Myelofibrosis. American Journal of Pathology, 2005, 167, 849-858.	3.8	62
133	Ex vivo amplification of T cells from human cord blood. Pathologie Et Biologie, 2005, 53, 151-158.	2.2	3
134	Impaired GATA-1 expression and myelofibrosis in an animal model. Pathologie Et Biologie, 2004, 52, 275-279.	2.2	13
135	Not children from a lesser god. Blood, 2004, 103, 368-369.	1.4	0
136	Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1low mice. Blood, 2004, 104, 3573-3580.	1.4	107
137	5-Azacytidine reactivates the erythroid differentiation potential of the myeloid-restricted murine cell line 32D Ro. Experimental Cell Research, 2003, 285, 258-267.	2.6	5
138	GATA-1 as a Regulator of Mast Cell Differentiation Revealed by the Phenotype of the GATA-1low Mouse Mutant. Journal of Experimental Medicine, 2003, 197, 281-296.	8.5	203
139	Robust Levels of Long-Term Multilineage Reconstitution in the Absence of Stem Cell Self-Replication inW/WvMice Transplanted with Purified Stem Cells. Journal of Hematotherapy and Stem Cell Research, 2003, 12, 409-424.	1.8	3
140	Placental/umbilical cord blood for unrelated-donor bone marrow reconstitution: relevance of nucleated red blood cells. Blood, 2002, 100, 2662-2664.	1.4	45
141	Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1low mice). Blood, 2002, 100, 1123-1132.	1.4	215
142	In Vitro Mass Production of Human Erythroid Cells from the Blood of Normal Donors and of Thalassemic Patients. Blood Cells, Molecules, and Diseases, 2002, 28, 169-180.	1.4	138
143	Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1low mice). Blood, 2001, 97, 3040-3050.	1.4	62
144	Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhydrazine-treated mice. Blood, 2000, 95, 2559-2568.	1.4	81

#	Article	IF	CITATIONS
145	Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood, 2000, 96, 2717-2722.	1.4	280
146	Erythropoietin-Dependent Suppression of the Expression of the Î ² Subunits of the Interleukin-3 Receptor during Erythroid Differentiation. Blood Cells, Molecules, and Diseases, 2000, 26, 467-478.	1.4	1
147	Stable and unstable transgene integration sites in the human genome: extinction of the Green Fluorescent Protein transgene in K562 cells. Gene, 2000, 256, 197-214.	2.2	43
148	Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhydrazine-treated mice. Blood, 2000, 95, 2559-2568.	1.4	6
149	Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood, 2000, 96, 2717-2722.	1.4	2
150	Lineage-Restricted Expression of Protein Kinase C Isoforms in Hematopoiesis. Blood, 1999, 93, 1178-1188.	1.4	44
151	In vivo expansion of purified hematopoietic stem cells transplanted in nonablated W/Wv mice. Experimental Hematology, 1999, 27, 1655-1666.	0.4	25
152	Increased expression of the distal, but not of the proximal,Gata1 transcripts during differentiation of primary erythroid cells. , 1999, 180, 390-401.		22
153	Thymus-Independent T Cell Differentiation in Vitro. , 1999, , 51-57.		0
154	Lineage-Restricted Expression of Protein Kinase C Isoforms in Hematopoiesis. Blood, 1999, 93, 1178-1188.	1.4	1
155	The making of an erythroid cell. Biotherapy (Dordrecht, Netherlands), 1998, 10, 251-268.	0.7	10
156	Stem cell factor induces proliferation and differentiation of fetal progenitor cells in the mouse. British Journal of Haematology, 1998, 101, 676-687.	2.5	34
157	Outcomes among 562 Recipients of Placental-Blood Transplants from Unrelated Donors. New England Journal of Medicine, 1998, 339, 1565-1577.	27.0	1,291
158	Expression in Hematopoietic Cells of GATA-1 Transcripts from the Alternative "Testis―Promoter during Development and Cell Differentiation. Biochemical and Biophysical Research Communications, 1997, 231, 299-304.	2.1	16
159	Growth factor receptor expression during in vitro differentiation of partially purified populations containing murine stem cells. Journal of Cellular Physiology, 1997, 171, 343-356.	4.1	29
160	Circulating Hematopoietic Stem Cell Populations in Human Fetuses: Implications for Fetal Gene Therapy and Alterations with in utero Red Cell Transfusion. Fetal Diagnosis and Therapy, 1996, 11, 231-240.	1.4	11
161	Circulating Progenitor Cells in Human Ontogenesis: Response to Growth Factors and Replating Potential. Stem Cells and Development, 1996, 5, 161-170.	1.0	30
162	Functional characterization of lymphoid cells generated in serum-deprived culture stimulated with stem cell factor and interleukin 7 from normal and autoimmune mice. Journal of Cellular Physiology, 1995, 164, 562-570.	4.1	5

#	Article	IF	CITATIONS
163	Alternatively spliced mRNAs encoding soluble isoforms of the erythropoietin receptor in murine cell lines and bone marrow. Gene, 1994, 147, 263-268.	2.2	15
164	Induction of the murine ?W phenotype? in long-term cultures of human cord blood cells by c-kit antisense oligomers. Journal of Cellular Physiology, 1993, 157, 158-163.	4.1	5
165	The generation of colony-forming cells (CFC) and the expansion of hematopoiesis in cultures of human cord blood cells is dependent on the presence of stem cell factor (SCF). Cytotechnology, 1993, 11, 107-113.	1.6	4
166	The biology of stem cell factor, a new hematopietic growth factor involved in stem cell regulation. International Journal of Clinical and Laboratory Research, 1993, 23, 70-77.	1.0	18
167	Long-Term Generation of Colony-Forming Cells (CFC) from CD34+Human Umbilical Cord Blood Cells. Leukemia and Lymphoma, 1993, 11, 263-273.	1.3	20
168	Aspects of the biology of the neonatal hematopoietic stem cell. Stem Cells, 1993, 11, 56-64.	3.2	4
169	Production of granulocyte colony-stimulating factor and granulocyte/macrophage-colony-stimulating factor after interleukin-1 stimulation of marrow stromal cell cultures from normal or aplastic anemia donors. Journal of Cellular Physiology, 1992, 152, 199-206.	4.1	14
170	Effects of recombinant human stem cell factor (SCF) on the growth of human progenitor cells in vitro. Journal of Cellular Physiology, 1991, 148, 503-509.	4.1	74
171	The control of proliferation and differentiation of early erythroid progenitors. Biotherapy (Dordrecht, Netherlands), 1990, 2, 299-303.	0.7	4
172	Progressive inactivation of the expression of an erythroid transcriptional factor in GM- and G-CSF-dependent myeloid cell lines. Nucleic Acids Research, 1990, 18, 6863-6869.	14.5	63
173	Human embryonic hemopoiesis: Control mechanisms underlying progenitor differentiation in vitro. Developmental Biology, 1988, 125, 127-134.	2.0	59
174	Early Hemopoietic Differentiation: The Action of Multi-CSF Is Complemented by Lineage Specific Growth Factors. Annals of the New York Academy of Sciences, 1987, 511, 39-49.	3.8	7
175	Cloning of human erythroid progenitors (BFU-E) in the absence of fetal bovine serum. British Journal of Haematology, 1987, 67, 129-133.	2.5	51