Charles W Carter Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3666193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling. International Journal of Molecular Sciences, 2022, 23, 1520.	4.1	5
2	A Leucyl-tRNA Synthetase Urzyme: Authenticity of tRNA Synthetase Catalytic Activities and Promiscuous Phosphorylation of Leucyl-5′AMP. International Journal of Molecular Sciences, 2022, 23, 4229.	4.1	9
3	Reciprocally-Coupled Gating: Strange Loops in Bioenergetics, Genetics, and Catalysis. Biomolecules, 2021, 11, 265.	4.0	11
4	Simultaneous codon usage, the origin of the proteome, and the emergence of de-novo proteins. Current Opinion in Structural Biology, 2021, 68, 142-148.	5.7	14
5	The Roots of Genetic Coding in Aminoacyl-tRNA Synthetase Duality. Annual Review of Biochemistry, 2021, 90, 349-373.	11.1	21
6	Escapement mechanisms: Efficient free energy transduction by reciprocally oupled gating. Proteins: Structure, Function and Bioinformatics, 2020, 88, 710-717.	2.6	17
7	Impedance Matching and the Choice Between Alternative Pathways for the Origin of Genetic Coding. International Journal of Molecular Sciences, 2020, 21, 7392.	4.1	11
8	Class I and II aminoacylâ€ŧRNA synthetase tRNA groove discrimination created the first synthetase–tRNA cognate pairs and was therefore essential to the origin of genetic coding. IUBMB Life, 2019, 71, 1088-1098.	3.4	28
9	Experimental solutions to problems defining the origin of codon-directed protein synthesis. BioSystems, 2019, 183, 103979.	2.0	20
10	Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding. Molecular Biology and Evolution, 2018, 35, 269-286.	8.9	50
11	Insuperable problems of the genetic code initially emerging in an RNA world. BioSystems, 2018, 164, 155-166.	2.0	49
12	HIV-1 Protease Uses Bi-Specific S2/S2′ Subsites to Optimize Cleavage of Two Classes of Target Sites. Journal of Molecular Biology, 2018, 430, 5182-5195.	4.2	13
13	Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic Acids Research, 2018, 46, 9667-9683.	14.5	38
14	Did Gene Expression Co-evolve with Gene Replication?. , 2018, , 293-313.		3
15	Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis. Structural Dynamics, 2017, 4, 032101.	2.3	17
16	Augmenting the anisotropic network model with torsional potentials improves PATH performance, enabling detailed comparison with experimental rate data. Structural Dynamics, 2017, 4, 032103.	2.3	15
17	High-Dimensional Mutant and Modular Thermodynamic Cycles, Molecular Switching, and Free Energy Transduction. Annual Review of Biophysics, 2017, 46, 433-453.	10.0	24
18	Coding of Class I and II Aminoacyl-tRNA Synthetases. Advances in Experimental Medicine and Biology, 2017. 966. 103-148.	1.6	40

#	Article	IF	CITATIONS
19	10.1063/1.4974218.1., 2017,,.		Ο
20	An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement without Ordered Ground-State Tertiary Structures. ACS Chemical Biology, 2016, 11, 1661-1668.	3.4	21
21	Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based. Journal of Biological Chemistry, 2016, 291, 255-265.	3.4	38
22	A modified PATH algorithm rapidly generates transition states comparable to those found by other well established algorithms. Structural Dynamics, 2016, 3, 012101.	2.3	26
23	tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry. RNA Biology, 2016, 13, 145-151.	3.1	32
24	An Alternative to the RNA World. Natural History, 2016, 125, 28-33.	0.2	15
25	Temperature dependence of amino acid hydrophobicities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7484-7488.	7.1	68
26	tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7489-7494.	7.1	64
27	Functional Class I and II Amino Acid-activating Enzymes Can Be Coded by Opposite Strands of the Same Gene. Journal of Biological Chemistry, 2015, 290, 19710-19725.	3.4	62
28	What RNA World? Why a Peptide/RNA Partnership Merits Renewed Experimental Attention. Life, 2015, 5, 294-320.	2.4	73
29	Enhanced Amino Acid Selection in Fully Evolved Tryptophanyl-tRNA Synthetase, Relative to Its Urzyme, Requires Domain Motion Sensed by the D1 Switch, a Remote Dynamic Packing Motif. Journal of Biological Chemistry, 2014, 289, 4367-4376.	3.4	33
30	Urzymology: Experimental Access to a Key Transition in the Appearance of Enzymes. Journal of Biological Chemistry, 2014, 289, 30213-30220.	3.4	46
31	The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biology Direct, 2014, 9, 11.	4.6	56
32	Did Class 1 and Class 2 Aminoacyl Trna Synthetases Descend from Genetically Complimentary, Catalytically Active ATP-Binding Motifs?. Biophysical Journal, 2014, 106, 675a.	0.5	2
33	Full Implementation of the Genetic Code by Tryptophanyl-tRNA Synthetase Requires Intermodular Coupling. Journal of Biological Chemistry, 2013, 288, 34736-34745.	3.4	34
34	Aminoacylating Urzymes Challenge the RNA World Hypothesis. Journal of Biological Chemistry, 2013, 288, 26856-26863.	3.4	77
35	Statistical Evaluation of the Rodin–Ohno Hypothesis: Sense/Antisense Coding of Ancestral Class I and II Aminoacyl-tRNA Synthetases. Molecular Biology and Evolution, 2013, 30, 1588-1604.	8.9	47
36	A Master Switch Couples Mg2+-Assisted Catalysis to Domain Motion in B.Âstearothermophilus Tryptophanyl-tRNA Synthetase. Structure, 2012, 20, 128-138.	3.3	37

CHARLES W CARTER JR

#	Article	IF	CITATIONS
37	Histidyl-tRNA Synthetase Urzymes. Journal of Biological Chemistry, 2011, 286, 10387-10395.	3.4	55
38	Tryptophanyl-tRNA Synthetase Urzyme. Journal of Biological Chemistry, 2010, 285, 38590-38601.	3.4	58
39	Six Rossmannoid folds, including the Class I aminoacyl-tRNA synthetases, share a partial core with the anti-codon-binding domain of a Class II aminoacyl-tRNA synthetase. Bioinformatics, 2010, 26, 709-714.	4.1	41
40	Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1790-1795.	7.1	28
41	Mg2+-Assisted Catalysis by B. Stearothermophilus TrpRS Is Promoted by Allosteric Effects. Structure, 2009, 17, 952-964.	3.3	26
42	E Pluribus Tres: The 2009 Nobel Prize in Chemistry. Structure, 2009, 17, 1558-1561.	3.3	1
43	On Primordial Sense–Antisense Coding. Journal of Molecular Evolution, 2009, 69, 555-67.	1.8	40
44	Mg ²⁺ -Free <i>Bacillus stearothermophilus</i> Tryptophanyl-tRNA Synthetase Retains a Major Fraction of the Overall Rate Enhancement for Tryptophan Activation. Journal of the American Chemical Society, 2008, 130, 1488-1494.	13.7	21
45	Mg2+â€Assisted Catalysis by B. stearothermophilus TrpRS is Promoted by Allosteric Effects. FASEB Journal, 2008, 22, 1009.4.	0.5	0
46	Crystal Structure of Tryptophanyl-tRNA Synthetase Complexed with Adenosine-5′ Tetraphosphate: Evidence for Distributed Use of Catalytic Binding Energy in Amino Acid Activation by Class I Aminoacyl-tRNA Synthetases. Journal of Molecular Biology, 2007, 369, 108-128.	4.2	42
47	A Minimal TrpRS Catalytic Domain Supports Sense/Antisense Ancestry of Class I and II Aminoacyl-tRNA Synthetases. Molecular Cell, 2007, 25, 851-862.	9.7	87
48	A Conformational Transition State Accompanies Tryptophan Activation by B. stearothermophilus Tryptophanyl-tRNA Synthetase. Structure, 2007, 15, 1272-1284.	3.3	37
49	Improving Marginal Crystals. Methods in Molecular Biology, 2007, 363, 153-174.	0.9	3
50	Computational Studies of Tryptophanyl-tRNA Synthetase: Activation of ATP by Induced-Fit. Journal of Molecular Biology, 2006, 362, 1159-1180.	4.2	51
51	Tryptophan activation activity of a minimal TrpRS catalytic domain. FASEB Journal, 2006, 20, A504.	0.5	0
52	Structure alignment via Delaunay tetrahedralization. Proteins: Structure, Function and Bioinformatics, 2005, 60, 66-81.	2.6	30
53	Interconversion of ATP Binding and Conformational Free Energies by Tryptophanyl-tRNA Synthetase: Structures of ATP Bound to Open and Closed, Pre-Transition-state Conformations. Journal of Molecular Biology, 2003, 325, 39-63.	4.2	84
54	Simplicial Neighborhood Analysis of Protein Packing (SNAPP): A Computational Geometry Approach to Studying Proteins. Methods in Enzymology, 2003, 374, 509-544.	1.0	36

CHARLES W CARTER JR

#	Article	IF	CITATIONS
55	Did tRNA Synthetase Classes Arise on Opposite Strands of the Same Gene?. Molecular Cell, 2002, 10, 705-708.	9.7	59
56	Energetics of enzyme stability: Response from Carter, Tropsha and Edgell. Trends in Biotechnology, 2002, 20, 2-3.	9.3	0
57	Enzymatic conformational fluctuations along the reaction coordinate of cytidine deaminase. Protein Science, 2002, 11, 1424-1434.	7.6	13
58	Identification of Sequence-Specific Tertiary Packing Motifs in Protein Structures using Delaunay Tessellation. Lecture Notes in Computational Science and Engineering, 2002, , 477-494.	0.3	10
59	Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. Journal of Molecular Biology, 2001, 311, 625-638.	4.2	122
60	High-resolution experimental phases for tryptophanyl-tRNA synthetase (TrpRS) complexed with tryptophanyl-5′AMP. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1595-1608.	2.5	28
61	Models for protein-zinc ion binding sites. II. The catalytic sites. International Journal of Quantum Chemistry, 2001, 83, 150-165.	2.0	30
62	Ancient Adaptation of the Active Site of Tryptophanyl-tRNA Synthetase for Tryptophan Bindingâ€. Biochemistry, 2000, 39, 13136-13143.	2.5	35
63	2.9 à crystal structure of ligandâ€free tryptophanylâ€ŧRNA synthetase: Domain movements fragment the adenine nucleotide binding site. Protein Science, 2000, 9, 218-231.	7.6	70
64	Cytidine Deaminases fromB. subtilisandE. coli:Â Compensating Effects of Changing Zinc Coordination and Quaternary Structureâ€. Biochemistry, 1999, 38, 12258-12265.	2.5	43
65	Solving a Heavy-Atom Substructure by Direct Methods. , 1998, , 253-273.		0
66	Ab Initio Determination of a Low Resolution Molecular Envelope by Direct Methods. , 1998, , 413-419.		0
67	[5] Response surface methods for optimizing and improving reproducibility of crystal growth. Methods in Enzymology, 1997, 276, 74-99.	1.0	31
68	[6] Phase improvement using conditional probability methods: Maximum entropy solvent flattening and phase permutation. Methods in Enzymology, 1997, 277, 79-109.	1.0	4
69	Crystal structure of estrogen sulphotransferase. Nature Structural and Molecular Biology, 1997, 4, 904-908.	8.2	263
70	Cytidine Deaminase Complexed to 3-Deazacytidine:  A "Valence Buffer―in Zinc Enzyme Catalysis. Biochemistry, 1996, 35, 1335-1341.	2.5	85
71	A Concerted Tryptophanyl-adenylate-dependent Conformational Change inBacillus subtilisTryptophanyl-tRNA Synthetase Revealed by the Fluorescence of Trp92. Journal of Molecular Biology, 1996, 260, 446-466.	4.2	21
72	Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure, 1995, 3, 17-31.	3.3	181

CHARLES W CARTER JR

#	Article	IF	CITATIONS
73	Quantitative Analysis of Crystal Growth. Journal of Molecular Biology, 1994, 238, 346-365.	4.2	32
74	Cognition, Mechanism, and Evolutionary Relationships in Aminoacyl-tRNA Synthetases. Annual Review of Biochemistry, 1993, 62, 715-748.	11.1	353
75	The mutation β99 Asp-Tyr stabilizes Y—A new, composite quaternary state of human hemoglobin. Proteins: Structure, Function and Bioinformatics, 1991, 10, 81-91.	2.6	86
76	Cloning heterologous genes into E. Coli for enzyme production and crystal growth: Problems of expression and microheterogeneity. Journal of Crystal Growth, 1988, 90, 168-179.	1.5	18
77	Crystals of Bacillus stearothermophilus tryptophanyl-tRNA synthetase containing enzymatically formed acyl transfer product tryptophanyl-ATP, an active site marker for the 3' CCA terminus of tryptophanyl-tRNATrp. Biochemistry, 1984, 23, 381-385.	2.5	23
78	Nucleoside Deaminases for Cytidine and Adenosine: Comparison with Deaminases Acting on RNA. , 0, , 363-375.		8