Nakarin Suwannarach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3666069/publications.pdf

Version: 2024-02-01

257450 254184 2,611 131 24 43 citations g-index h-index papers 133 133 133 2505 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 2019, 97, 1-136.	12.3	459
2	Outline of Fungi and fungus-like taxa – 2021. Mycosphere, 2022, 13, 53-453.	6.1	160
3	Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules, 2020, 25, 2811.	3.8	121
4	Fungal diversity notes 1387–1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity, 2021, 111, 1-335.	12.3	88
5	Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. Journal of Functional Foods, 2016, 27, 352-364.	3.4	74
6	Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS ONE, 2019, 14, e0222187.	2.5	64
7	Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses. Molecules, 2020, 25, 1800.	3.8	56
8	Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Protection, 2013, 45, 63-70.	2.1	55
9	The numbers of fungi: are the most speciose genera truly diverse?. Fungal Diversity, 2022, 114, 387-462.	12.3	52
10	Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Frontiers in Microbiology, 2020, 11, 188.	3.5	51
11	Screening of Phosphate-Solubilizing Fungi From Air and Soil in Yunnan, China: Four Novel Species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Frontiers in Microbiology, 2020, 11, 585215.	3.5	50
12	Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS ONE, 2018, 13, e0205070.	2.5	48
13	Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand. Annals of Microbiology, 2013, 63, 1341-1351.	2.6	46
14	Role of Volatiles from the Endophytic Fungus Trichoderma asperelloides PSU-P1 in Biocontrol Potential and in Promoting the Plant Growth of Arabidopsis thaliana. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT (/Ovenslock	10415 50 217
15	Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms, 2020, 8, 264.	3.6	43
16	Volatile Organic Compound from Trichoderma asperelloides TSU1: Impact on Plant Pathogenic Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 187.	3.5	38
17	Streptomyces angustmyceticus NR8-2 as a potential microorganism for the biological control of leaf spots of Brassica rapa subsp. pekinensis caused by Colletotrichum sp. and Curvularia lunata. Biological Control, 2019, 138, 104046.	3.0	36
18	Evaluation of <i>Muscodor suthepensis</i> strain <scp>CMU</scp> â€Cib462 as a postharvest biofumigant for tangerine fruit rot caused by <i>Penicillium digitatum</i> Journal of the Science of Food and Agriculture, 2016, 96, 339-345.	3.5	35

#	Article	IF	Citations
19	Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). Fungal Diversity, 2022, 112, 1-88.	12.3	35
20	<i>Muscodor cinnamomi</i> , a new endophytic species from <i>Cinnamomum bejolghota</i> . Mycotaxon, 2011, 114, 15-23.	0.3	34
21	Evaluation of a Newly Identified Endophytic Fungus, Trichoderma phayaoense for Plant Growth Promotion and Biological Control of Gummy Stem Blight and Wilt of Muskmelon. Frontiers in Microbiology, 2021, 12, 634772.	3.5	34
22	Applications of volatile compounds acquired from Muscodor heveae against white root rot disease in rubber trees (Hevea brasiliensis $M\tilde{A}^{1}/4$ ll. Arg.) and relevant allelopathy effects. Fungal Biology, 2017, 121, 573-581.	2.5	30
23	Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiologica, 2020, 65, 573-590.	2.3	28
24	Impact of Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. Biology, 2022, 11, 569.	2.8	28
25	First report of leaf spot disease on oil palm caused by Pestalotiopsis theae in Thailand. Journal of General Plant Pathology, 2013, 79, 277-279.	1.0	27
26	Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Annals of Microbiology, 2014, 64, 707-720.	2.6	27
27	Species concepts of Dothideomycetes: classification, phylogenetic inconsistencies and taxonomic standardization. Fungal Diversity, 2021, 109, 283-319.	12.3	26
28	Evaluation of Muscodor cinnamomi as an egg biofumigant for the reduction of microorganisms on eggshell surfaces and its effect on egg quality. International Journal of Food Microbiology, 2017, 244, 52-61.	4.7	25
29	Evaluation of Multifarious Plant Growth Promoting Trials of Yeast Isolated from the Soil of Assam Tea (Camellia sinensis var. assamica) Plantations in Northern Thailand. Microorganisms, 2020, 8, 1168.	3.6	25
30	Evolution of freshwater Diaporthomycetidae (Sordariomycetes) provides evidence for five new orders and six new families. Fungal Diversity, 2021, 107, 71-105.	12.3	25
31	Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Applied Microbiology and Biotechnology, 2019, 103, 6973-6987.	3.6	24
32	Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand. PLoS ONE, 2020, 15, e0227478.	2.5	24
33	The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis. Mycorrhiza, 2016, 26, 333-343.	2.8	21
34	Basidiome formation of an edible wild, putatively ectomycorrhizal fungus, <i>Phlebopus portentosus</i> without host plant. Mycologia, 2012, 104, 597-603.	1.9	20
35	Biocontrol of Rhizoctonia solani AG-2, the causal agent of damping-off by Muscodor cinnamomi CMU-Cib 461. World Journal of Microbiology and Biotechnology, 2012, 28, 3171-3177.	3.6	20
36	Comparative Evaluation of Chemical Composition, Phenolic Compounds, and Antioxidant and Antimicrobial Activities of Tropical Black Bolete Mushroom Using Different Preservation Methods. Foods, 2021, 10, 781.	4.3	20

#	Article	IF	CITATIONS
37	Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. Journal of Fungi (Basel, Switzerland), 2022, 8, 226.	3.5	20
38	Characterization and efficacy of Muscodor cinnamomi in promoting plant growth and controlling Rhizoctonia root rot in tomatoes. Biological Control, 2015, 90, 25-33.	3.0	19
39	Isolation of entomopathogenic fungi from Northern Thailand and their production in cereal grains. World Journal of Microbiology and Biotechnology, 2012, 28, 3281-3291.	3.6	18
40	Existence of Muscodor vitigenus, M. equiseti and M. heveae sp. nov. in leaves of the rubber tree (Hevea) Tj ETQq(0 0 0 rgBT / 2.6	Overlock 10
41	Valorization of Lignocellulosic Wastes to Produce Phytase and Cellulolytic Enzymes from a Thermophilic Fungus, Thermoascus aurantiacus SL16W, under Semi-Solid State Fermentation. Journal of Fungi (Basel, Switzerland), 2021, 7, 286.	3.5	18
42	Biological control activity of Trichoderma asperelloides PSU-P1 against gummy stem blight in muskmelon (Cucumis melo). Physiological and Molecular Plant Pathology, 2021, 115, 101663.	2.5	17
43	Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. Biology, 2022, 11, 852.	2.8	17
44	First report of gummy stem blight caused by <i>Stagonosporopsis cucurbitacearum</i> on cantaloupe in Thailand. Canadian Journal of Plant Pathology, 2018, 40, 306-311.	1.4	15
45	Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. Journal of Fungi (Basel,) Tj ETQq1 1 0.784	3 134 5 gBT /0	O v∉ rlock 10°
46	Bioactive compounds content and their biological properties of acetone extract of <i>Cuscuta reflexa</i> Roxb. grown on various host plants. Natural Product Research, 2019, 33, 544-547.	1.8	13
47	Identification of Microorganisms Dwelling on the 19th Century Lanna Mural Paintings from Northern Thailand Using Culture-Dependent and -Independent Approaches. Biology, 2022, 11, 228.	2.8	13
48	Evaluation of Native Entomopathogenic Fungi for the Control of Fall Armyworm (Spodoptera) Tj ETQq0 0 0 rgBT	Overlock : 3.5	10 Tf 50 307 13
49	Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. Journal of Fungi (Basel, Switzerland), 2021, 7, 703.	3.5	12
50	Apophysomyces thailandensis (Mucorales, Mucoromycota), a new species isolated from soil in northern Thailand and its solubilization of non-soluble minerals. MycoKeys, 2019, 45, 75-92.	1.9	12
51	Diversity and Biosynthetic Activities of Agarwood Associated Fungi. Diversity, 2022, 14, 211.	1.7	12
52	Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). Fungal Diversity, 2022, 114, 463-490.	12.3	12
53	Morphological and Molecular Identification of Plant Pathogenic Fungi Associated with Dirty Panicle Disease in Coconuts (Cocos nucifera) in Thailand. Journal of Fungi (Basel, Switzerland), 2022, 8, 335.	3.5	12
54	Leaf spot on cattleya orchid caused by <i>Neoscytalidium orchidacearum</i> in Thailand. Canadian Journal of Plant Pathology, 2018, 40, 109-114.	1.4	11

#	Article	IF	CITATIONS
55	First report of fruit rot on cantaloupe caused by Fusarium equiseti in Thailand. Journal of General Plant Pathology, 2019, 85, 295-300.	1.0	11
56	Volatile Constituents of Endophytic Fungi Isolated from Aquilaria sinensis with Descriptions of Two New Species of Nemania. Life, 2021, 11, 363.	2.4	11
57	Growth Enhancement of Arabidopsis (Arabidopsis thaliana) and Onion (Allium cepa) With Inoculation of Three Newly Identified Mineral-Solubilizing Fungi in the Genus Aspergillus Section Nigri. Frontiers in Microbiology, 2021, 12, 705896.	3.5	10
58	Optimization of high endoglucanase yields production from polypore fungus, Microporus xanthopus strain KA038 under solid-state fermentation using green tea waste. Biology Open, 2019, 8, .	1.2	10
59	Characterization of Polysaccharides from Wild Edible Mushrooms from Thailand and Their Antioxidant, Antidiabetic, and Antihypertensive Activities. International Journal of Medicinal Mushrooms, 2020, 22, 221-233.	1.5	10
60	Trichoderma asperelloides PSU-P1 Induced Expression of Pathogenesis-Related Protein Genes against Gummy Stem Blight of Muskmelon (Cucumis melo) in Field Evaluation. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgB	T / Ø øerloc	k 10 Tf 50 53
61	Pseudoplagiostoma dipterocarpi sp. nov., a new endophytic fungus from Thailand. Mycoscience, 2016, 57, 118-122.	0.8	9
62	A new endophytic fungus, Tulasnella phuhinrongklaensis (Cantharellales, Basidiomycota) isolated from roots of the terrestrial orchid, Phalaenopsis pulcherrima. Phytotaxa, 2018, 374, 99.	0.3	9
63	Molecular Phylogenetic Diversity and Biological Characterization of Diaporthe Species Associated with Leaf Spots of Camellia sinensis in Taiwan. Plants, 2021, 10, 1434.	3.5	9
64	First report of Alternaria leaf blight disease on oil palm caused by Alternaria longipes in Thailand. Phytoparasitica, 2015, 43, 57-59.	1,2	8
65	Filamentous fungi with high paraquatâ€degrading activity isolated from contaminated agricultural soils in northern Thailand. Letters in Applied Microbiology, 2021, 72, 467-475.	2.2	8
66	Reappraisal of Immotthia in Dictyosporiaceae, Pleosporales: Introducing Immotthia bambusae sp. nov. and Pseudocyclothyriella clematidis comb. et gen. nov. Based on Morphology and Phylogeny. Frontiers in Microbiology, 2021, 12, 656235.	3.5	8
67	Endophytic Fungi Associated with Coffee Leaves in China Exhibited In Vitro Antagonism against Fungal and Bacterial Pathogens. Journal of Fungi (Basel, Switzerland), 2022, 8, 698.	3 . 5	8
68	Phytochemical Analysis and Evaluation of Antioxidant and Biological Activities of Extracts from Three Clauseneae Plants in Northern Thailand. Plants, 2021, 10, 117.	3.5	7
69	Novelties in Fuscosporellaceae (Fuscosporellales): Two New Parafuscosporella from Thailand Revealed by Morphology and Phylogenetic Analyses. Diversity, 2021, 13, 517.	1.7	7
70	Ectomycorrhizal Mushrooms as a Natural Bio-Indicator for Assessment of Heavy Metal Pollution. Agronomy, 2022, 12, 1041.	3.0	7
71	<i>Scleroderma suthepense</i> , a new ectomycorrhizal fungus from Thailand. Mycotaxon, 2013, 123, 1-7.	0.3	6
72	A new whitish truffle, Tuber thailandicum from northern Thailand and its ectomycorrhizal association. Mycological Progress, 2015, 14, 1.	1.4	6

#	Article	IF	Citations
73	A new endophytic fungus, Chrysofolia barringtoniae sp. nov., from Thailand. Mycoscience, 2016, 57, 361-365.	0.8	6
74	First report of Phoma leaf spot disease on cherry palm caused by <i>Phoma herbarum</i> in Thailand. Canadian Journal of Plant Pathology, 2016, 38, 103-106.	1.4	6
75	Introducing a new pleosporalean family Sublophiostomataceae fam. nov. to accommodate Sublophiostoma gen. nov Scientific Reports, 2021, 11, 9496.	3.3	6
76	Isolation, Characterization, and Efficacy of Actinobacteria Associated with Arbuscular Mycorrhizal Spores in Promoting Plant Growth of Chili (Capsicum flutescens L.). Microorganisms, 2021, 9, 1274.	3.6	6
77	Five Novel Taxa from Freshwater Habitats and New Taxonomic Insights of Pleurotheciales and Savoryellomycetidae. Journal of Fungi (Basel, Switzerland), 2021, 7, 711.	3.5	6
78	First Report of <i>Lasiodiplodia theobromae</i> Causing Fruit Rot on Melon (<i>Cucumis melo</i>) in Thailand. Plant Disease, 2020, 104, 280-280.	1.4	6
79	Three New Species, Two New Records and Four New Collections of Tubeufiaceae from Thailand and China. Journal of Fungi (Basel, Switzerland), 2022, 8, 206.	3.5	6
80	Using Culture-Dependent and Molecular Techniques to Identify Endophytic Fungi Associated with Tea Leaves (Camellia spp.) in Yunnan Province, China. Diversity, 2022, 14, 287.	1.7	6
81	Bambusicolous Fungi in Pleosporales: Introducing Four Novel Taxa and a New Habitat Record for Anastomitrabeculia didymospora. Journal of Fungi (Basel, Switzerland), 2022, 8, 630.	3.5	6
82	Molecular and Biochemical Mechanisms of Elicitors in Pest Resistance. Life, 2022, 12, 844.	2.4	6
83	Morphological and molecular evidence support a new truffle, Tuber lannaense, from Thailand. Mycological Progress, 2016, 15, 827-834.	1.4	5
84	<i>Tuber magnatum</i> in Thailand, a first report from Asia. Mycotaxon, 2017, 132, 635-642.	0.3	5
85	Comparative Evaluation of Phytochemicals, and Antidiabetic and Antioxidant Activities of Cuscuta reflexa Grown on Different Hosts in Northern Thailand. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	5
86	Inhibition of the aflatoxinâ€producing fungus Aspergillus flavus by a plasma jet system. Journal of Food Processing and Preservation, 2021, 45, .	2.0	5
87	Three Novel Entomopathogenic Fungi From China and Thailand. Frontiers in Microbiology, 2020, 11, 608991.	3.5	5
88	Multigene Phylogeny and Morphology Reveal Three Novel Species and a Novel Record of Agaricus From Northern Thailand. Frontiers in Microbiology, 2021, 12, 650513.	3.5	5
89	Stemphylium Leaf Blight of Welsh Onion (<i>Allium fistulosum</i>): An Emerging Disease in Sanxing, Taiwan. Plant Disease, 2021, 105, 4121-4131.	1.4	5
90	Morphology Characterization, Molecular Identification, and Pathogenicity of Fungal Pathogen Causing Kaffir Lime Leaf Blight in Northern Thailand. Plants, 2022, 11, 273.	3.5	5

#	Article	IF	Citations
91	Comparative Evaluation of Phytochemicals, and Antidiabetic and Antioxidant Activities of Cuscuta reflexa Grown on Different Hosts in Northern Thailand. Natural Product Communications, 2017, 12, 51-54.	0.5	5
92	Additions to Lyophyllaceae s.l. from China. Journal of Fungi (Basel, Switzerland), 2021, 7, 1101.	3.5	5
93	New report of leaf blight disease on eucalyptus (<i>Eucalyptus camaldulensis</i>) caused by <i>Pestalotiopsis virgatula</i> in Thailand. Canadian Journal of Plant Pathology, 2012, 34, 306-309.	1.4	4
94	<i>Gymnopilus dilepis</i> , a new record in Thailand. Mycotaxon, 2017, 132, 337-341.	0.3	4
95	Xanthagaricus thailandensis sp. nov. (Agaricales, Basidiomycota), from northern Thailand. Phytotaxa, 2018, 348, 109.	0.3	4
96	A New Report on Edible Tropical Bolete, <i>Phlebopus spongiosus </i> In Thailand and Its Fruiting Body Formation without the Need for a Host Plant. Mycobiology, 2020, 48, 263-275.	1.7	4
97	Spegazzinia camelliae sp. nov. (Didymosphaeriaceae, Pleosprales), a new endophytic fungus from northern Thailand . Phytotaxa, 2021, 483, 117-128.	0.3	4
98	The Plant Family Asteraceae Is a Cache for Novel Fungal Diversity: Novel Species and Genera With Remarkable Ascospores in Leptosphaeriaceae. Frontiers in Microbiology, 2021, 12, 660261.	3.5	4
99	Clitopilus lampangensis (Agaricales, Entolomataceae), a new species from northern Thailand. MycoKeys, 2019, 58, 69-82.	1.9	4
100	Identification and Pathogenicity of Paramyrothecium Species Associated with Leaf Spot Disease in Northern Thailand. Plants, 2022, 11, 1445.	3.5	4
101	A Global Overview of Diversity and Phylogeny of the Rust Genus Uromyces. Journal of Fungi (Basel,) Tj ETQq1 1 C).78 <u>4</u> 314 r	gBT /Overlo
102	A New Citrinin Dimer Isolated from <i>Aspergillus terreus</i> StrainZDF21. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	3
103	First report of sour rot on tomato caused by Galactomyces reessii in Thailand. Journal of General Plant Pathology, 2016, 82, 228-231.	1.0	3
104	Morphological and molecular evidence support a new endophytic fungus, Chaetomella endophytica from Japan. Mycoscience, 2018, 59, 473-478.	0.8	3
105	Determination of volatile organic compounds in the stinkhorn fungus Pseudocolus fusiformis in different stages of fruiting body formation. Mycoscience, 2020, 61, 65-70.	0.8	3
106	Daldiniaeschsone A, a Rare Tricyclic Polyketide Having a Chromone Unit Fused to a δ-Lactone and Its Symmetrical Biphenyl Dimer, Daldiniaeschsone B, from an Endophytic Fungus Daldinia eschscholtzii SDBR-CMUNKC745. Journal of Fungi (Basel, Switzerland), 2021, 7, 358.	3.5	3
107	New epiphytic sooty molds: Alloscorias syngonii (Readerielliopsidaceae) from Thailand. Phytotaxa, 2021, 507, .	0.3	3
108	Characterization of Pisolithus orientalis in culture and in vitro mycorrhization with Eucalyptus camaldulensis and Pinus kesiya. Mycosphere, 2016, 7, 1415-1424.	6.1	3

#	Article	IF	CITATIONS
109	An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. Journal of Fungi (Basel, Switzerland), 2021, 7, 957.	3.5	3
110	Bacterial Communities in Lanna Phak-Gard-Dong (Pickled Mustard Green) from Three Different Ethnolinguistic Groups in Northern Thailand. Biology, 2022, 11, 150.	2.8	3
111	First Report of <i>Colletotrichum theobromicola</i> Causing Centro Anthracnose Leaf Spot in Thailand. Plant Disease, 2022, 106, 1306.	1.4	3
112	Morphological and phylogenetic evidence reveal Tetraploa cylindrica sp. nov. (Tetraplosphaeriaceae,) Tj ETQq0 0 0 554, 189-200.) rgBT /Ove 0.3	erlock 10 Tf
113	Cantharocybe virosa, first record of the genus in Thailand. Mycotaxon, 2018, 133, 481-485.	0.3	2
114	Spissiomyces endophytica (Dothideomycetes, Ascomycota), a new endophytic fungus from Thailand. Phytotaxa, 2018, 333, 219.	0.3	2
115	Soil Metabarcoding Offers a New Tool for the Investigation and Hunting of Truffles in Northern Thailand. Journal of Fungi (Basel, Switzerland), 2021, 7, 293.	3.5	2
116	Cultivation of Edible Tropical Bolete, Phlebopus spongiosus, in Thailand and Yield Improvement by High-Voltage Pulsed Stimulation. Agronomy, 2022, 12, 115.	3.0	2
117	Taxonomy, Phylogenetic and Ancestral Area Reconstruction in Phyllachora, with Four Novel Species from Northwestern China. Journal of Fungi (Basel, Switzerland), 2022, 8, 520.	3.5	2
118	Phaeoclavulina pseudozippelii sp. nov. (Gomphales, Basidiomycota) from Northern Thailand. Phytotaxa, 2018, 362, 211.	0.3	1
119	Two novel species of Marasmius (Marasmiaceae, Agaricales) from lower northern Thailand. Phytotaxa, 2019, 403, 111.	0.3	1
120	A novel addition to the Pezizellaceae (Rhytismatales, Ascomycota) . Phytotaxa, 2021, 480, 251-261.	0.3	1
121	Cunninghamella saisamornae (Cunninghamellaceae, Mucorales), a new soil fungus from northern Thailand. Phytotaxa, 2021, 509, .	0.3	1
122	<i>Sulzbacheromyces yunnanensis</i> , a new record for Thailand. Mycotaxon, 2019, 134, 215-219.	0.3	1
123	Pleurotus sirindhorniae (Pleurotaceae, Agaricales), a new species from northern Thailand . Phytotaxa, 2020, 460, 285-295.	0.3	1
124	Two Novel Species and Two New Records within the Genus Pluteus (Agaricomycetes, Agaricales) from Thailand. Diversity, 2022, 14, 156.	1.7	1
125	New report of Morganella purpurascens in Thailand. Mycoscience, 2014, 55, 49-52.	0.8	O
126	First report of <i>Singerocybe</i> in Thailand. Mycotaxon, 2016, 131, 205-209.	0.3	0

#	Article	IF	CITATIONS
127	Gyrodon suthepensis (Boletales, Basidiomycota), a new ectomycorrhizal fungus from northern Thailand and its ecomycorhizal association. Phytotaxa, 2017, 321, 181.	0.3	0
128	Two new records of puffballs in Thailand. Mycotaxon, 2017, 132, 99-106.	0.3	0
129	<i>Limacella bangladeshana,</i> first record of the genus in Thailand. Mycotaxon, 2019, 134, 529-534.	0.3	O
130	Survey of Volvariella (Agaricales, Basidiomycota) including Two New Species, V. neovolvacea and V. thailandensis, from Northern Thailand. Diversity, 2022, 14, 161.	1.7	0
131	First Report of Cape Gooseberry Scab Caused by <i>Cladosporium exasperatum</i> in Thailand. Plant Disease, 0, , .	1.4	0