
Kevin M Koo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3665590/publications.pdf Version: 2024-02-01

KEVIN M KOO

#	Article	IF	CITATIONS
1	Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor. Analytical Chemistry, 2011, 83, 3499-3506.	6.5	256
2	Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Scientific Reports, 2015, 5, 7639.	3.3	226
3	Detecting Exosomes Specifically: A Multiplexed Device Based on Alternating Current Electrohydrodynamic Induced <i>Nanoshearing</i> . Analytical Chemistry, 2014, 86, 11125-11132.	6.5	220
4	Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nature Communications, 2015, 6, 5899.	12.8	162
5	Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nature Communications, 2018, 9, 4915.	12.8	135
6	DNA–bare gold affinity interactions: mechanism and applications in biosensing. Analytical Methods, 2015, 7, 7042-7054.	2.7	131
7	Poly(A) Extensions of miRNAs for Amplification-Free Electrochemical Detection on Screen-Printed Gold Electrodes. Analytical Chemistry, 2016, 88, 2000-2005.	6.5	128
8	Real time and label free profiling of clinically relevant exosomes. Scientific Reports, 2016, 6, 30460.	3.3	124
9	Engineering Stateâ€ofâ€theâ€Art Plasmonic Nanomaterials for SERSâ€Based Clinical Liquid Biopsy Applications. Advanced Science, 2019, 6, 1900730.	11.2	112
10	Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags. Theranostics, 2016, 6, 1506-1513.	10.0	106
11	Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Science Advances, 2020, 6, eaax3223.	10.3	97
12	Enabling Rapid and Specific Surface-Enhanced Raman Scattering Immunoassay Using Nanoscaled Surface Shear Forces. ACS Nano, 2015, 9, 6354-6362.	14.6	93
13	Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens. Analytical Chemistry, 2016, 88, 8074-8081.	6.5	87
14	Characterising the phenotypic evolution of circulating tumour cells during treatment. Nature Communications, 2018, 9, 1482.	12.8	86
15	Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nature Reviews Urology, 2019, 16, 302-317.	3.8	86
16	Electrohydrodynamicâ€Induced SERS Immunoassay for Extensive Multiplexed Biomarker Sensing. Small, 2017, 13, 1602902.	10.0	79
17	Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation. Chemical Communications, 2014, 50, 3585-3588.	4.1	78
18	A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples. Nanoscale, 2017, 9, 3496-3503.	5.6	74

Κενιν Μ Κοο

#	Article	IF	CITATIONS
19	Label-free detection of exosomes using a surface plasmon resonance biosensor. Analytical and Bioanalytical Chemistry, 2019, 411, 1311-1318.	3.7	70
20	eMethylsorb: electrochemical quantification of DNA methylation at CpG resolution using DNA–gold affinity interactions. Chemical Communications, 2014, 50, 13153-13156.	4.1	68
21	Design and Clinical Verification of Surface-Enhanced Raman Spectroscopy Diagnostic Technology for Individual Cancer Risk Prediction. ACS Nano, 2018, 12, 8362-8371.	14.6	66
22	Amplification-Free Detection of Gene Fusions in Prostate Cancer Urinary Samples Using mRNA–Gold Affinity Interactions. Analytical Chemistry, 2016, 88, 6781-6788.	6.5	65
23	Duplex Microfluidic SERS Detection of Pathogen Antigens with Nanoyeast Single-Chain Variable Fragments. Analytical Chemistry, 2014, 86, 9930-9938.	6.5	60
24	Methylsorb: A Simple Method for Quantifying DNA Methylation Using DNA–Gold Affinity Interactions. Analytical Chemistry, 2014, 86, 10179-10185.	6.5	59
25	Multiplexed SERS Detection of Soluble Cancer Protein Biomarkers with Gold–Silver Alloy Nanoboxes and Nanoyeast Single-Chain Variable Fragments. Analytical Chemistry, 2018, 90, 10377-10384.	6.5	59
26	Enabling miniaturised personalised diagnostics: from lab-on-a-chip to lab-in-a-drop. Lab on A Chip, 2017, 17, 3200-3220.	6.0	55
27	Native MicroRNA Targets Trigger Selfâ€Assembly of Nanozymeâ€Patterned Hollowed Nanocuboids with Optimal Interparticle Gaps for Plasmonicâ€Activated Cancer Detection. Small, 2019, 15, e1904689.	10.0	53
28	Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst, The, 2021, 146, 3731-3749.	3.5	53
29	Simple Isothermal Strategy for Multiplexed, Rapid, Sensitive, and Accurate miRNA Detection. ACS Sensors, 2016, 1, 670-675.	7.8	52
30	Toward Precision Medicine: A Cancer Molecular Subtyping Nano‣trategy for RNA Biomarkers in Tumor and Urine. Small, 2016, 12, 6233-6242.	10.0	52
31	eMethylsorb: rapid quantification of DNA methylation in cancer cells on screen-printed gold electrodes. Analyst, The, 2014, 139, 6178-6184.	3.5	51
32	Rapid, Single-Cell Electrochemical Detection of <i>Mycobacterium tuberculosis</i> Using Colloidal Gold Nanoparticles. Analytical Chemistry, 2015, 87, 10613-10618.	6.5	49
33	Naked-Eye Colorimetric and Electrochemical Detection of <i>Mycobacterium tuberculosis</i> —toward Rapid Screening for Active Case Finding. ACS Sensors, 2016, 1, 173-178.	7.8	49
34	Watching SERS glow for multiplex biomolecular analysis in the clinic: A review. Applied Materials Today, 2019, 15, 431-444.	4.3	49
35	A SERS microfluidic platform for targeting multiple soluble immune checkpoints. Biosensors and Bioelectronics, 2019, 126, 178-186.	10.1	48
36	Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosensors and Bioelectronics, 2020, 168, 112429.	10.1	48

κενιν Μ Κοο

#	Article	IF	CITATIONS
37	Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles. Analyst, The, 2017, 142, 4788-4793.	3.5	47
38	<i>In Situ</i> Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS Nano, 2021, 15, 11231-11243.	14.6	47
39	Facile One-Pot Synthesis of Nanodot-Decorated Gold–Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. ACS Applied Materials & Interfaces, 2018, 10, 32526-32535.	8.0	45
40	A Sample-to-Targeted Gene Analysis Biochip for Nanofluidic Manipulation of Solid-Phase Circulating Tumor Nucleic Acid Amplification in Liquid Biopsies. ACS Sensors, 2018, 3, 2597-2603.	7.8	44
41	Microdevices for detecting locus-specific DNA methylation at CpG resolution. Biosensors and Bioelectronics, 2014, 56, 278-285.	10.1	41
42	Colorimetric <i>TMPRSS2-ERG</i> Gene Fusion Detection in Prostate Cancer Urinary Samples via Recombinase Polymerase Amplification. Theranostics, 2016, 6, 1415-1424.	10.0	38
43	PrimerSuite: A High-Throughput Web-Based Primer Design Program for Multiplex Bisulfite PCR. Scientific Reports, 2017, 7, 41328.	3.3	36
44	Rapid DNA detection of Mycobacterium tuberculosis-towards single cell sensitivity in point-of-care diagnosis. Scientific Reports, 2015, 5, .	3.3	35
45	Tracking Drugâ€Induced Epithelial–Mesenchymal Transition in Breast Cancer by a Microfluidic Surfaceâ€Enhanced Raman Spectroscopy Immunoassay. Small, 2020, 16, e1905614.	10.0	33
46	Magnetic nanomaterial–based electrochemical biosensors for the detection of diverse circulating cancer biomarkers. Current Opinion in Electrochemistry, 2021, 25, 100645.	4.8	33
47	A simple bridging flocculation assay for rapid, sensitive and stringent detection of gene specific DNA methylation. Scientific Reports, 2015, 5, 15028.	3.3	32
48	DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: Application in simultaneous amplification-free analysis of multiple RNA species. Nano Research, 2018, 11, 940-952.	10.4	32
49	Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems. Accounts of Chemical Research, 2019, 52, 2113-2123.	15.6	32
50	Molecular Nanoshearing: An Innovative Approach to Shear off Molecules with AC-Induced Nanoscopic Fluid Flow. Scientific Reports, 2014, 4, 3716.	3.3	31
51	An Integrated Microfluidic‧ERS Platform Enables Sensitive Phenotyping of Serum Extracellular Vesicles in Early Stage Melanomas. Advanced Functional Materials, 2022, 32, 2010296.	14.9	30
52	Parallel profiling of cancer cells and proteins using a graphene oxide functionalized ac-EHD SERS immunoassay. Nanoscale, 2018, 10, 18482-18491.	5.6	29
53	Considerations of Solid-Phase DNA Amplification. Bioconjugate Chemistry, 2010, 21, 690-695.	3.6	28
54	Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces. Biomicrofluidics, 2015, 9, 061501.	2.4	25

Κενιν Μ Κοο

#	Article	IF	CITATIONS
55	The Growing Impact of Micro/Nanomaterialâ€Based Systems in Precision Oncology: Translating "Multiomics―Technologies. Advanced Functional Materials, 2020, 30, 1909306.	14.9	25
56	DNA Ligase-Based Strategy for Quantifying Heterogeneous DNA Methylation without Sequencing. Clinical Chemistry, 2015, 61, 163-171.	3.2	24
57	Bioengineered Polymer Nanobeads for Isolation and Electrochemical Detection of Cancer Biomarkers. ACS Applied Materials & Interfaces, 2021, 13, 31418-31430.	8.0	23
58	Tunable " <i>Nano-Shearing</i> ― A Physical Mechanism to Displace Nonspecific Cell Adhesion During Rare Cell Detection. Analytical Chemistry, 2014, 86, 2042-2049.	6.5	22
59	Amplificationâ€Free Multiâ€RNAâ€Type Profiling for Cancer Risk Stratification via Alternating Current Electrohydrodynamic Nanomixing. Small, 2018, 14, e1704025.	10.0	22
60	Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types <i>via</i> an Ultrasensitive Chip. ACS Sensors, 2021, 6, 3182-3194.	7.8	22
61	A simple, rapid, low-cost technique for naked-eye detection of urine-isolated TMPRSS2:ERG gene fusion RNA. Scientific Reports, 2016, 6, 30722.	3.3	21
62	Direct Enhanced Detection of Multiple Circulating Tumor DNA Variants in Unprocessed Plasma by Magnetic-Assisted Bioelectrocatalytic Cycling. ACS Sensors, 2020, 5, 3217-3225.	7.8	21
63	Surface-Enhanced Raman Spectroscopy for Cancer Immunotherapy Applications: Opportunities, Challenges, and Current Progress in Nanomaterial Strategies. Nanomaterials, 2020, 10, 1145.	4.1	21
64	A high-resolution study of in situ surface-enhanced Raman scattering nanotag behavior in biological systems. Journal of Colloid and Interface Science, 2019, 537, 536-546.	9.4	20
65	Amplification-Free SARS-CoV-2 Detection Using Nanoyeast-scFv and Ultrasensitive Plasmonic Nanobox-Integrated Nanomixing Microassay. Analytical Chemistry, 2021, 93, 10251-10260.	6.5	19
66	Toward precision oncology: SERS microfluidic systems for multiplex biomarker analysis in liquid biopsy. Materials Advances, 2022, 3, 1459-1471.	5.4	19
67	Interfacial nano-mixing in a miniaturised platform enables signal enhancement and <i>in situ</i> detection of cancer biomarkers. Nanoscale, 2018, 10, 10884-10890.	5.6	18
68	Single droplet detection of immune checkpoints on a multiplexed electrohydrodynamic biosensor. Analyst, The, 2019, 144, 6914-6921.	3.5	18
69	μ-eLCR: a microfabricated device for electrochemical detection of DNA base changes in breast cancer cell lines. Lab on A Chip, 2013, 13, 4385.	6.0	17
70	An exosomal- and interfacial-biosensing based strategy for remote monitoring of aberrantly phosphorylated proteins in lung cancer cells. Biomaterials Science, 2018, 6, 2336-2341.	5.4	17
71	Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS Applied Materials & Interfaces, 2016, 8, 30649-30664.	8.0	16
72	High-speed biosensing strategy for non-invasive profiling of multiple cancer fusion genes in urine. Biosensors and Bioelectronics, 2017, 89, 715-720.	10.1	16

κενιν Μ Κοο

#	Article	IF	CITATIONS
73	An integrated multi-molecular sensor for simultaneous BRAFV600E protein and DNA single point mutation detection in circulating tumour cells. Lab on A Chip, 2019, 19, 738-748.	6.0	16
74	Rapid and Sensitive Fusion Gene Detection in Prostate Cancer Urinary Specimens by Label-Free Surface-Enhanced Raman Scattering. Journal of Biomedical Nanotechnology, 2016, 12, 1798-1805.	1.1	15
75	Detection of aberrant protein phosphorylation in cancer using direct gold-protein affinity interactions. Biosensors and Bioelectronics, 2017, 91, 8-14.	10.1	15
76	Dynamic Monitoring of EMT in CTCs as an Indicator of Cancer Metastasis. Analytical Chemistry, 2021, 93, 16787-16795.	6.5	15
77	Electric Field Induced Isolation, Release, and Recapture of Tumor Cells. ACS Sensors, 2016, 1, 399-405.	7.8	14
78	Electrochemical detection of protein glycosylation using lectin and protein–gold affinity interactions. Analyst, The, 2016, 141, 2356-2361.	3.5	13
79	"Mix-to-Go―Silver Colloidal Strategy for Prostate Cancer Molecular Profiling and Risk Prediction. Analytical Chemistry, 2018, 90, 12698-12705.	6.5	13
80	Nucleic Acid Hybridizationâ€Based Noise Suppression for Ultraselective Multiplexed Amplification of Mutant Variants. Small, 2021, 17, e2006370.	10.0	13
81	Enhancing Protein Capture Using a Combination of Nanoyeast Single-Chain Fragment Affinity Reagents and Alternating Current Electrohydrodynamic Forces. Analytical Chemistry, 2015, 87, 11673-11681.	6.5	12
82	The role of circulating tumor DNA testing in breast cancer liquid biopsies: getting ready for prime time. Breast Cancer Management, 2020, 9, .	0.2	12
83	Alternating Current Electrohydrodynamics Induced Nanoshearing and Fluid Micromixing for Specific Capture of Cancer Cells. Chemistry - A European Journal, 2014, 20, 3724-3729.	3.3	11
84	Geometric optimisation of electrohydrodynamic fluid flows for enhanced biosensing. Microchemical Journal, 2018, 137, 231-237.	4.5	11
85	A multiplex microplatform for the detection of multiple DNA methylation events using gold–DNA affinity. Analyst, The, 2017, 142, 3573-3578.	3.5	10
86	A microfluidic-SERSplatform for isolation and immuno-phenotyping of antigen specific T-cells. Sensors and Actuators B: Chemical, 2019, 284, 281-288.	7.8	10
87	Electrohydrodynamic removal of non-specific colloidal adsorption at electrode interfaces. Chemical Communications, 2014, 50, 4813-4815.	4.1	8
88	Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces. Scientific Reports, 2016, 6, 19709.	3.3	8
89	Retooling phage display with electrohydrodynamic nanomixing and nanopore sequencing. Lab on A Chip, 2019, 19, 4083-4092.	6.0	8
90	Phosphoprotein Biosensors for Monitoring Pathological Protein Structural Changes. Trends in Biotechnology, 2020, 38, 519-531.	9.3	8

Κενιν Μ Κοο

#	Article	IF	CITATIONS
91	Ultrasensitive melanoma biomarker detection using a microchip SERS immunoassay with anisotropic Au–Ag alloy nanoboxes. RSC Advances, 2020, 10, 28778-28785.	3.6	6
92	Nanostructured mesoporous gold electrodes detect protein phosphorylation in cancer with electrochemical signal amplification. Analyst, The, 2020, 145, 6639-6648.	3.5	6
93	An Electrochemical and Raman Scattering Dual Detection Biosensor for Rapid Screening and Biomolecular Profiling of Cancer Biomarkers. Chemosensors, 2022, 10, 93.	3.6	5
94	Progressing Antimicrobial Resistance Sensing Technologies across Human, Animal, and Environmental Health Domains. ACS Sensors, 2021, 6, 4283-4296.	7.8	5
95	Molecular locker probe enrichment of gene fusion variants from matched patient liquid biopsy specimens for magneto-bioelectrocatalytic nanosensing. Nanoscale, 2022, 14, 4225-4233.	5.6	4
96	Interfacial Biosensing: Direct Biosensing of Biomolecules at the Bare Metal Interface. , 2018, , 269-277.		3
97	Reading Conformational Changes in Proteins with a New Colloidal-Based Interfacial Biosensing System. ACS Applied Materials & Interfaces, 2019, 11, 11125-11135.	8.0	3
98	Adjustable Fluidic Nanomixing: Amplificationâ€Free Multiâ€RNAâ€Type Profiling for Cancer Risk Stratification via Alternating Current Electrohydrodynamic Nanomixing (Small 17/2018). Small, 2018, 14, 1870075.	10.0	2
99	Multiomics: The Growing Impact of Micro/Nanomaterialâ€Based Systems in Precision Oncology: Translating "Multiomics―Technologies (Adv. Funct. Mater. 37/2020). Advanced Functional Materials, 2020, 30, 2070248.	14.9	1
100	Next-Generation Molecular Discovery: From Bottom-Up In Vivo and In Vitro Approaches to In Silico Top-Down Approaches for Therapeutics Neogenesis. Life, 2022, 12, 363.	2.4	1
101	Cancer Therapy: Toward Precision Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor and Urine (Small 45/2016). Small, 2016, 12, 6302-6302.	10.0	0
102	Simultaneous BRAFV600E Protein and DNA Aberration Detection in Circulating Melanoma Cells Using an Integrated Multimolecular Sensor. Methods in Molecular Biology, 2021, 2265, 265-276.	0.9	0
103	Label-Free Surface-Enhanced Raman Scattering Detection System for Clinical Biomarker Targets. Springer Theses, 2019, , 45-55.	0.1	0
104	Clinical Evaluation of Non-invasive Nanodiagnostics for PCa Risk Stratification. Springer Theses, 2019, , 83-97.	0.1	0
105	Unifying Next-Generation Biomarkers and Nanodiagnostic Platforms for Precision Prostate Cancer Management. Springer Theses, 2019, , 1-29.	0.1	0
106	Simultaneous Analysis of Multiple Biomarkers via High-Throughput Parallel Profiling. Springer Theses, 2019, , 71-82.	0.1	0
107	Colorimetric Gene Fusion Diagnostics for Visual Binary Readout. Springer Theses, 2019, , 31-44.	0.1	0