Jingchao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3665120/publications.pdf

Version: 2024-02-01

		30070	24258
118	12,647	54	110
papers	citations	h-index	g-index
120	120	120	10657
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chemical Society Reviews, 2019, 48, 38-71.	38.1	917
2	Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nature Materials, 2019, 18, 1133-1143.	27.5	513
3	Dualâ€Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Nearâ€Infrared Window Photothermal Therapy: A Comparative Study. Advanced Materials, 2018, 30, e1705980.	21.0	489
4	Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials, 2018, 155, 217-235.	11.4	404
5	Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials, 2015, 38, 10-21.	11.4	362
6	Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer. Accounts of Chemical Research, 2020, 53, 752-762.	15.6	319
7	Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. ACS Nano, 2018, 12, 8520-8530.	14.6	305
8	Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 2018, 12, 2643-2651.	14.6	294
9	Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic Therapy. Nano Letters, 2018, 18, 586-594.	9.1	294
10	Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nature Communications, 2020, 11, 1857.	12.8	294
11	A Semiconducting Polymer Nanoâ€prodrug for Hypoxiaâ€Activated Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 5920-5924.	13.8	289
12	Metabolizable Semiconducting Polymer Nanoparticles for Second Nearâ€Infrared Photoacoustic Imaging. Advanced Materials, 2019, 31, e1808166.	21.0	288
13	Organic Semiconducting Proâ€nanostimulants for Nearâ€Infrared Photoactivatable Cancer Immunotherapy. Angewandte Chemie - International Edition, 2019, 58, 12680-12687.	13.8	263
14	Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 3995-3998.	13.8	256
15	Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for inÂvivo tumor MR imaging. Biomaterials, 2013, 34, 8382-8392.	11.4	245
16	Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials, 2014, 35, 3666-3677.	11.4	236
17	Recent Progresses in Phototherapy‧ynergized Cancer Immunotherapy. Advanced Functional Materials, 2018, 28, 1804688.	14.9	234
18	Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angewandte Chemie - International Edition, 2020, 59, 10633-10638.	13.8	234

#	Article	IF	Citations
19	Photoactivatable Organic Semiconducting Pro-nanoenzymes. Journal of the American Chemical Society, 2019, 141, 4073-4079.	13.7	231
20	Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nature Communications, 2021, 12, 2934.	12.8	231
21	Responsive Exosome Nanoâ€bioconjugates for Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 2018-2022.	13.8	226
22	A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nature Communications, 2019, 10, 2064.	12.8	210
23	Near-Infrared Fluorescent Macromolecular Reporters for Real-Time Imaging and Urinalysis of Cancer Immunotherapy. Journal of the American Chemical Society, 2020, 142, 7075-7082.	13.7	208
24	Renalâ€clearable Molecular Semiconductor for Second Nearâ€Infrared Fluorescence Imaging of Kidney Dysfunction. Angewandte Chemie - International Edition, 2019, 58, 15120-15127.	13.8	202
25	Second Nearâ€Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy. Advanced Materials, 2021, 33, e2003458.	21.0	197
26	Activatable Polymer Nanoenzymes for Photodynamic Immunometabolic Cancer Therapy. Advanced Materials, 2021, 33, e2007247.	21.0	194
27	Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale, 2016, 8, 7992-8007.	5.6	193
28	Second Nearâ€Infrared Absorbing Agents for Photoacoustic Imaging and Photothermal Therapy. Small Methods, 2019, 3, 1900553.	8.6	184
29	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 8161-8165.	13.8	183
30	Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today, 2021, 37, 101073.	11.9	182
31	Unimolecular Chemo-fluoro-luminescent Reporter for Crosstalk-Free Duplex Imaging of Hepatotoxicity. Journal of the American Chemical Society, 2019, 141, 10581-10584.	13.7	175
32	3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. Polymers, 2016, 8, 269.	4.5	160
33	Nearâ€Infrared Photoactivatable Semiconducting Polymer Nanoblockaders for Metastasisâ€Inhibited Combination Cancer Therapy. Advanced Materials, 2019, 31, e1905091.	21.0	157
34	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 12682-12705.	13.8	151
35	Facile One-Pot Synthesis of Fe ₃ O ₄ @Au Composite Nanoparticles for Dual-Mode MR/CT Imaging Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10357-10366.	8.0	132
36	Nanotransducers for Nearâ€Infrared Photoregulation in Biomedicine. Advanced Materials, 2019, 31, e1901607.	21.0	125

#	Article	IF	CITATIONS
37	Semiconducting Polymer Nanoreporters for Nearâ€Infrared Chemiluminescence Imaging of Immunoactivation. Advanced Materials, 2020, 32, e1906314.	21.0	118
38	Dendrimer-Assisted Formation of Fe ₃ O ₄ /Au Nanocomposite Particles for Targeted Dual Mode CT/MR Imaging of Tumors. Small, 2015, 11, 4584-4593.	10.0	114
39	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie - International Edition, 2019, 58, 18197-18201.	13.8	114
40	Molecular Chemiluminescent Probes with a Very Long Nearâ€Infrared Emission Wavelength for inâ€Vivo Imaging. Angewandte Chemie - International Edition, 2021, 60, 3999-4003.	13.8	113
41	A Renalâ€Clearable Duplex Optical Reporter for Realâ€Time Imaging of Contrastâ€Induced Acute Kidney Injury. Angewandte Chemie - International Edition, 2019, 58, 17796-17804.	13.8	110
42	Synthesis and Characterization of PEGylated Polyethylenimine-Entrapped Gold Nanoparticles for Blood Pool and Tumor CT Imaging. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17190-17199.	8.0	106
43	Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Scientific Reports, 2016, 6, 28325.	3.3	105
44	Chargeâ€Reversal Polymer Nanoâ€modulators for Photodynamic Immunotherapy of Cancer. Angewandte Chemie - International Edition, 2021, 60, 19355-19363.	13.8	90
45	Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. Journal of Nanobiotechnology, 2020, 18, 108.	9.1	86
46	Hydrothermal Synthesis and Functionalization of Iron Oxide Nanoparticles for MR Imaging Applications. Particle and Particle Systems Characterization, 2014, 31, 1223-1237.	2.3	79
47	Insight into the interactions between nanoparticles and cells. Biomaterials Science, 2017, 5, 173-189.	5.4	78
48	A Renalâ€Clearable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer. Angewandte Chemie - International Edition, 2020, 59, 4415-4420.	13.8	77
49	Activatable Cancer Sonoâ€Immunotherapy using Semiconducting Polymer Nanobodies. Advanced Materials, 2022, 34, e2203246.	21.0	7 5
50	Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30145-30154.	8.0	72
51	Influence of cell size on cellular uptake of gold nanoparticles. Biomaterials Science, 2016, 4, 970-978.	5.4	70
52	TEMPO-Conjugated Gold Nanoparticles for Reactive Oxygen Species Scavenging and Regulation of Stem Cell Differentiation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35683-35692.	8.0	66
53	Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2505-2520.	3.3	60
54	Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy. Journal of Materials Chemistry B, 2017, 5, 245-253.	5.8	58

#	Article	IF	Citations
55	Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite nanodisks. New Journal of Chemistry, 2015, 39, 2847-2855.	2.8	56
56	Thermoresponsive Semiconducting Polymer Nanoparticles for Contrastâ€Enhanced Photoacoustic Imaging. Advanced Functional Materials, 2019, 29, 1903461.	14.9	53
57	Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. Journal of Ovarian Research, 2016, 9, 19.	3.0	52
58	Organic Semiconducting Proâ€nanostimulants for Nearâ€Infrared Photoactivatable Cancer Immunotherapy. Angewandte Chemie, 2019, 131, 12810-12817.	2.0	50
59	Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy. Angewandte Chemie, 2018, 130, 4059-4062.	2.0	49
60	Nanoencapsulation of individual mammalian cells with cytoprotective polymer shell. Biomaterials, 2017, 133, 253-262.	11.4	48
61	Facile synthesis of folic acid-functionalized iron oxide nanoparticles with ultrahigh relaxivity for targeted tumor MR imaging. Journal of Materials Chemistry B, 2015, 3, 5720-5730.	5.8	44
62	A Semiconducting Polymer Nanoâ€prodrug for Hypoxiaâ€Activated Photodynamic Cancer Therapy. Angewandte Chemie, 2019, 131, 5981-5985.	2.0	43
63	Facile preparation of albumin-stabilized gold nanostars for the targeted photothermal ablation of cancer cells. Journal of Materials Chemistry B, 2015, 3, 5806-5814.	5.8	40
64	Hyaluronic Acid-Modified Magnetic Iron Oxide Nanoparticles for MR Imaging of Surgically Induced Endometriosis Model in Rats. PLoS ONE, 2014, 9, e94718.	2.5	39
65	Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angewandte Chemie, 2020, 132, 10720-10725.	2.0	37
66	Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 1353-1362.	5.8	36
67	Ligand density-dependent influence of arginine–glycine–aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells. Nano Research, 2018, 11, 1247-1261.	10.4	36
68	Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomedicine and Pharmacotherapy, 2021, 137, 111333.	5.6	35
69	Multiplex Optical Urinalysis for Early Detection of Drug-Induced Kidney Injury. Analytical Chemistry, 2020, 92, 6166-6172.	6.5	34
70	Bifunctional scaffolds for the photothermal therapy of breast tumor cells and adipose tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 7728-7736.	5.8	33
71	Semiconducting Polymer Nanobiocatalysts for Photoactivation of Intracellular Redox Reactions. Angewandte Chemie - International Edition, 2018, 57, 13484-13488.	13.8	32
72	Renalâ€clearable Molecular Semiconductor for Second Nearâ€Infrared Fluorescence Imaging of Kidney Dysfunction. Angewandte Chemie, 2019, 131, 15264-15271.	2.0	32

#	Article	IF	Citations
73	Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy. Journal of Nanobiotechnology, 2022, 20, 23.	9.1	32
74	Preparation of gelatin/Fe ₃ O ₄ composite scaffolds for enhanced and repeatable cancer cell ablation. Journal of Materials Chemistry B, 2016, 4, 5664-5672.	5.8	31
75	Semiconducting Photosensitizerâ€Incorporated Copolymers as Nearâ€Infrared Afterglow Nanoagents for Tumor Imaging. Advanced Healthcare Materials, 2018, 7, e1800329.	7.6	31
76	Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Advances in Colloid and Interface Science, 2017, 249, 374-385.	14.7	30
77	A Renalâ€Clearable Duplex Optical Reporter for Realâ€Time Imaging of Contrastâ€Induced Acute Kidney Injury. Angewandte Chemie, 2019, 131, 17960-17968.	2.0	30
78	Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T 1 -weighted tumor MR imaging. Colloids and Surfaces B: Biointerfaces, 2015, 136, 506-513.	5.0	29
79	Responsive Exosome Nanoâ€bioconjugates for Synergistic Cancer Therapy. Angewandte Chemie, 2020, 132, 2034-2038.	2.0	27
80	Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density. Advanced Healthcare Materials, 2017, 6, 1700317.	7.6	26
81	Near-infrared photothermal liposomal nanoantagonists for amplified cancer photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 7149-7159.	5.8	26
82	Photothermal Ablation of Cancer Cells by Albumin-Modified Gold Nanorods and Activation of Dendritic Cells. Materials, 2019, 12, 31.	2.9	25
83	Sulfur Defect-Engineered Biodegradable Cobalt Sulfide Quantum Dot-Driven Photothermal and Chemodynamic Anticancer Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25183-25196.	8.0	25
84	3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications. Stem Cells International, 2021, 2021, 1-22.	2.5	24
85	Molecular Chemiluminescent Probes with a Very Long Nearâ€Infrared Emission Wavelength for inâ€Vivo Imaging. Angewandte Chemie, 2021, 133, 4045-4049.	2.0	23
86	Construction of nanomaterials as contrast agents or probes for glioma imaging. Journal of Nanobiotechnology, 2021, 19, 125.	9.1	22
87	Facile preparation of hyaluronic acid-modified Fe ₃ O ₄ @Mn ₃ O ₄ nanocomposites for targeted T ₁ /T _{/T₂ dual-mode MR imaging of cancer cells. RSC Advances, 2016, 6, 35295-35304.}	3.6	21
88	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angewandte Chemie, 2019, 131, 8245-8249.	2.0	20
89	Bioenzyme-based nanomedicines for enhanced cancer therapy. Nano Convergence, 2022, 9, 7.	12.1	19
90	Facile Synthesis of Gd(OH) ₃ â€Doped Fe ₃ O ₄ Nanoparticles for Dualâ€Mode T ₁ â€and T ₂ â€Weighted Magnetic Resonance Imaging Applications. Particle and Particle Systems Characterization, 2015, 32, 934-943.	2.3	18

#	Article	IF	Citations
91	Preparation of dexamethasone-loaded calcium phosphate nanoparticles for the osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 6801-6810.	5.8	18
92	Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS Applied Bio Materials, 2020, 3, 3935-3955.	4.6	16
93	A Renalâ€Clearable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer. Angewandte Chemie, 2020, 132, 4445-4450.	2.0	16
94	Nanosonosensitizers With Ultrasound-Induced Reactive Oxygen Species Generation for Cancer Sonodynamic Immunotherapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 761218.	4.1	16
95	Phototherapy-Synergized Cancer Immunotherapy: Recent Progresses in Phototherapy-Synergized Cancer Immunotherapy (Adv. Funct. Mater. 46/2018). Advanced Functional Materials, 2018, 28, 1870327.	14.9	15
96	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie, 2019, 131, 18365-18369.	2.0	15
97	Antibody-conjugated gold nanoparticles as nanotransducers for second near-infrared photo-stimulation of neurons in rats. Nano Convergence, 2022, 9, 13.	12.1	15
98	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 12792-12815.	2.0	14
99	Facile Synthesis of Lactobionic Acid-Targeted Iron Oxide Nanoparticles with Ultrahigh Relaxivity for Targeted MR Imaging of an Orthotopic Model of Human Hepatocellular Carcinoma. Particle and Particle Systems Characterization, 2017, 34, 1600113.	2.3	13
100	Cellular effects of magnetic nanoparticles explored by atomic force microscopy. Biomaterials Science, 2015, 3, 1284-1290.	5.4	12
101	Targeting ligand-functionalized photothermal scaffolds for cancer cell capture and in situ ablation. Biomaterials Science, 2017, 5, 2276-2284.	5.4	12
102	Radioactive organic semiconducting polymer nanoparticles for multimodal cancer theranostics. Journal of Colloid and Interface Science, 2022, 619, 219-228.	9.4	12
103	Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Materials Today Bio, 2022, 16, 100364.	5.5	12
104	Oxygen-producing proenzyme hydrogels for photodynamic-mediated metastasis-inhibiting combinational therapy. Journal of Materials Chemistry B, 2021, 9, 5255-5263.	5.8	11
105	Chargeâ€Reversal Polymer Nanoâ€modulators for Photodynamic Immunotherapy of Cancer. Angewandte Chemie, 2021, 133, 19504-19512.	2.0	11
106	Enzyme-Loaded pH-Sensitive Photothermal Hydrogels for Mild-temperature-mediated Combinational Cancer Therapy. Frontiers in Chemistry, 2021, 9, 736468.	3.6	10
107	Recent Advances in Engineering Nanomedicines for Second Near-Infrared Photothermal-Combinational Immunotherapy. Nanomaterials, 2022, 12, 1656.	4.1	9
108	Liposome-based nanocomplexes with pH-sensitive second near-infrared photothermal property for combinational immunotherapy. Applied Materials Today, 2021, 25, 101258.	4.3	8

#	Article	IF	CITATIONS
109	Semiconducting Polymer Nanobiocatalysts for Photoactivation of Intracellular Redox Reactions. Angewandte Chemie, 2018, 130, 13672-13676.	2.0	7
110	Near-Infrared Photoactivatable Immunomodulatory Nanoparticles for Combinational Immunotherapy of Cancer. Frontiers in Chemistry, 2021, 9, 701427.	3.6	7
111	¹³¹ I-Labeled gold nanoframeworks for radiotherapy-combined second near-infrared photothermal therapy of cancer. Journal of Materials Chemistry B, 2021, 9, 9316-9323.	5.8	7
112	Targeted delivery of doxorubicin by lactobionic acid-modified laponite to hepatocarcinoma cells. Journal of Controlled Release, 2015, 213, e34.	9.9	5
113	AgNPs/nGOx/Apra nanocomposites for synergistic antimicrobial therapy and scarless skin recovery. Journal of Materials Chemistry B, 2022, 10, 1393-1402.	5.8	5
114	A facile synthesis of size- and shape-controlled Gd(OH) ₃ nanoparticles and Gd(OH) ₃ @Au core/shell nanostars. New Journal of Chemistry, 2017, 41, 15136-15143.	2.8	3
115	Iron Oxide Nanoparticles: Facile Synthesis of Gd(OH)3-Doped Fe3O4Nanoparticles for Dual-Mode T1-and T2-Weighted Magnetic Resonance Imaging Applications (Part. Part. Syst. Charact. 10/2015). Particle and Particle Systems Characterization, 2015, 32, 918-918.	2.3	1
116	Imaging: Hydrothermal Synthesis and Functionalization of Iron Oxide Nanoparticles for MR Imaging Applications (Part. Part. Syst. Charact. 12/2014). Particle and Particle Systems Characterization, 2014, 31, 1314-1314.	2.3	0
117	Innentitelbild: A Renalâ€Clearable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer (Angew. Chem. 11/2020). Angewandte Chemie, 2020, 132, 4218-4218.	2.0	0
118	A Magnetic Sensor Based on Poly(\hat{i}^3 -Glutamic Acid)-Functionalized Iron Oxide Nanoparticles for Cr3+ Detection Current Nanoscience, 2021, 17, .	1.2	0