J Mark Cock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3664566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Providing a phylogenetic framework for trait-based analyses in brown algae: Phylogenomic tree inferred from 32 nuclear protein-coding sequences. Molecular Phylogenetics and Evolution, 2022, 168, 107408.	2.7	2
2	Selection drives convergent gene expression changes during transitions to co-sexuality in haploid sexual systems. Nature Ecology and Evolution, 2022, 6, 579-589.	7.8	12
3	Chromatin landscape associated with sexual differentiation in a UV sex determination system. Nucleic Acids Research, 2022, 50, 3307-3322.	14.5	9
4	An Efficient Chromatin Immunoprecipitation Protocol for the Analysis of Histone Modification Distributions in the Brown Alga Ectocarpus. Methods and Protocols, 2022, 5, 36.	2.0	2
5	Alternation of Generations in Plants and Algae. , 2021, , 631-644.		2
6	Histone modifications during the life cycle of the brown alga Ectocarpus. Genome Biology, 2021, 22, 12.	8.8	29
7	Biochemical characteristics of a diffusible factor that induces gametophyte to sporophyte switching in the brown alga Ectocarpus. Journal of Phycology, 2021, 57, 742-753.	2.3	3
8	Priming of Marine Macrophytes for Enhanced Restoration Success and Food Security in Future Oceans. Frontiers in Marine Science, 2021, 8, .	2,5	21
9	Evolution of life cycles and reproductive traits: Insights from the brown algae. Journal of Evolutionary Biology, 2021, 34, 992-1009.	1.7	35
10	Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity. Genes, 2021, 12, 1055.	2.4	9
11	Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes, 2021, 12, 1059.	2.4	34
12	Targeted CRISPR as9â€based gene knockouts in the model brown alga <i>Ectocarpus</i> . New Phytologist, 2021, 231, 2077-2091.	7.3	41
13	A partially sexâ€reversed giant kelp sheds light into the mechanisms of sexual differentiation in a UV sexual system. New Phytologist, 2021, 232, 252-263.	7.3	11
14	Evolution of Multicellularity. Genes, 2021, 12, 1532.	2.4	0
15	Brown Algal Model Organisms. Annual Review of Genetics, 2020, 54, 71-92.	7.6	16
16	Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells, 2020, 9, 2526.	4.1	14
17	Phylogeny and Evolution of the Brown Algae. Critical Reviews in Plant Sciences, 2020, 39, 281-321.	5.7	82
18	Ectocarpus: an evo-devo model for the brown algae. EvoDevo, 2020, 11, 19.	3.2	24

#	Article	IF	CITATIONS
19	instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder. Genome Biology, 2020, 21, 148.	8.8	38
20	Organelle inheritance and genome architecture variation in isogamous brown algae. Scientific Reports, 2020, 10, 2048.	3.3	12
21	Parallelisable non-invasive biomass, fitness and growth measurement of macroalgae and other protists with nephelometry. Algal Research, 2020, 46, 101762.	4.6	4
22	Production and Bioassay of a Diffusible Factor That Induces Gametophyte-to-Sporophyte Developmental Reprogramming in the Brown Alga Ectocarpus. Bio-protocol, 2020, 10, e3753.	0.4	1
23	Unusual Patterns of Mitochondrial Inheritance in the Brown Alga Ectocarpus. Molecular Biology and Evolution, 2019, 36, 2778-2789.	8.9	5
24	Origin and evolution of sexâ€determination systems in the brown algae. New Phytologist, 2019, 222, 1751-1756.	7.3	34
25	A key role for sex chromosomes in the regulation of parthenogenesis in the brown alga Ectocarpus. PLoS Genetics, 2019, 15, e1008211.	3.5	26
26	Megaviruses: An involvement in phytohormone receptor gene transfer in brown algae?. Gene, 2019, 704, 149-151.	2.2	5
27	Rapid turnover of life-cycle-related genes in the brown algae. Genome Biology, 2019, 20, 35.	8.8	36
28	Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes. Genome Biology and Evolution, 2019, 11, 86-108.	2.5	28
29	Convergent recruitment of TALE homeodomain life cycle regulators to direct sporophyte development in land plants and brown algae. ELife, 2019, 8, .	6.0	44
30	Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus. Genes, 2018, 9, 286.	2.4	18
31	UV Chromosomes and Haploid Sexual Systems. Trends in Plant Science, 2018, 23, 794-807.	8.8	66
32	The <i>Ectocarpus IMMEDIATE UPRIGHT</i> gene encodes a member of a novel family of cysteine-rich proteins that have an unusual distribution across the eukaryotes. Development (Cambridge), 2017, 144, 409-418.	2.5	27
33	Multiple gene movements into and out of haploid sex chromosomes. Genome Biology, 2017, 18, 104.	8.8	63
34	The Algal Revolution. Trends in Plant Science, 2017, 22, 726-738.	8.8	73
35	High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus. Scientific Reports, 2017, 7, 43241.	3.3	50
36	Biotic interactions as drivers of algal origin and evolution. New Phytologist, 2017, 216, 670-681.	7.3	25

#	Article	IF	CITATIONS
37	DISTAG/TBCCd1 Is Required for Basal Cell Fate Determination in <i>Ectocarpus</i> . Plant Cell, 2017, 29, 3102-3122.	6.6	22
38	Reâ€annotation, improved largeâ€scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga <i>Ectocarpus</i> . New Phytologist, 2017, 214, 219-232.	7.3	65
39	Rapid Evolution of microRNA Loci in the Brown Algae. Genome Biology and Evolution, 2017, 9, 740-749.	2.5	22
40	Alternation of Generations in Plants and Algae. , 2017, , 1-14.		1
41	Characterization of newly developed expressed sequence tag-derived microsatellite markers revealed low genetic diversity within and low connectivity between European Saccharina latissima populations. Journal of Applied Phycology, 2016, 28, 3057-3070.	2.8	23
42	Evolution and maintenance of haploid-diploid life cycles in natural populations: The case of the marine brown alga <i>Ectocarpus</i> . Evolution; International Journal of Organic Evolution, 2015, 69, 1808-1822.	2.3	49
43	Development of PCRâ€Based Markers to Determine the Sex of Kelps. PLoS ONE, 2015, 10, e0140535.	2.5	36
44	microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga <i>Ectocarpus</i> . Nucleic Acids Research, 2015, 43, 6384-6398.	14.5	40
45	Sexual Dimorphism and the Evolution of Sex-Biased Gene Expression in the Brown Alga Ectocarpus. Molecular Biology and Evolution, 2015, 32, 1581-1597.	8.9	111
46	The Pseudoautosomal Regions of the U/V Sex Chromosomes of the Brown Alga <i>Ectocarpus</i> Exhibit Unusual Features. Molecular Biology and Evolution, 2015, 32, 2973-2985.	8.9	25
47	Genome-wide comparison of ultraviolet and ethyl methanesulphonate mutagenesis methods for the brown alga Ectocarpus. Marine Genomics, 2015, 24, 109-113.	1.1	13
48	Emergence of Ectocarpus as a Model System to Study the Evolution of Complex Multicellularity in the Brown Algae. Advances in Marine Genomics, 2015, , 153-162.	1.2	9
49	Proteomics Analysis of Heterogeneous Flagella in Brown Algae (Stramenopiles). Protist, 2014, 165, 662-675.	1.5	32
50	A Haploid System of Sex Determination in the Brown Alga Ectocarpus sp Current Biology, 2014, 24, 1945-1957.	3.9	131
51	Evolution and regulation of complex life cycles: a brown algal perspective. Current Opinion in Plant Biology, 2014, 17, 1-6.	7.1	57
52	Gene silencing in <i><scp>F</scp>ucus</i> embryos: developmental consequences of <scp>RNA</scp> iâ€mediated cytoskeletal disruption. Journal of Phycology, 2013, 49, 819-829.	2.3	27
53	Genome structure and metabolic features in the red seaweed <i>Chondrus crispus</i> shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5247-5252.	7.1	307
54	Ecological and evolutionary genomics of marine photosynthetic organisms. Molecular Ecology, 2013, 22, 867-907.	3.9	29

#	Article	IF	CITATIONS
55	Nonâ€cell autonomous regulation of life cycle transitions in the model brown alga Ectocarpus. New Phytologist, 2013, 197, 503-510.	7.3	21
56	Immunostaining of Ectocarpus Cells. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067975-pdb.prot067975.	0.3	6
57	<i>Ectocarpus</i> : A Model Organism for the Brown Algae. Cold Spring Harbor Protocols, 2012, 2012, pdb.emo065821.	0.3	62
58	Genetic Crosses between <i>Ectocarpus</i> Strains: Figure 1 Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067942.	0.3	15
59	How to Cultivate <i>Ectocarpus</i> : Figure 1 Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067934.	0.3	51
60	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	1.1	18
61	Extraction of High-Quality Genomic DNA from <i>Ectocarpus</i> . Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067967.	0.3	2
62	Genomics of brown algae: current advances and future prospects. Genes and Genomics, 2012, 34, 1-5.	1.4	6
63	In Silico Survey of the Mitochondrial Protein Uptake and Maturation Systems in the Brown Alga Ectocarpus siliculosus. PLoS ONE, 2011, 6, e19540.	2.5	10
64	Brown algae. Current Biology, 2011, 21, R573-R575.	3.9	23
65	Microarray estimation of genomic inter-strain variability in the genus Ectocarpus (Phaeophyceae). BMC Molecular Biology, 2011, 12, 2.	3.0	19
66	Genetic regulation of life cycle transitions in the brown alga Ectocarpus. Plant Signaling and Behavior, 2011, 6, 1858-1860.	2.4	11
67	<i>OUROBOROS</i> is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga <i>Ectocarpus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11518-11523.	7.1	88
68	Algal models in plant biology. Journal of Experimental Botany, 2011, 62, 2425-2430.	4.8	29
69	Characterization of GDP-mannose Dehydrogenase from the Brown Alga Ectocarpus siliculosus Providing the Precursor for the Alginate Polymer. Journal of Biological Chemistry, 2011, 286, 16707-16715.	3.4	29
70	Copper stress proteomics highlights local adaptation of two strains of the model brown alga <i>Ectocarpus siliculosus</i> . Proteomics, 2010, 10, 2074-2088.	2.2	85
71	A sequenceâ€ŧagged genetic map for the brown alga <i>Ectocarpus siliculosus</i> provides largeâ€scale assembly of the genome sequence. New Phytologist, 2010, 188, 42-51.	7.3	59
72	Genetic diversity of <i>Ectocarpus</i> (Ectocarpales, Phaeophyceae) in Peru and northern Chile, the area of origin of the genomeâ€sequenced strain. New Phytologist, 2010, 188, 30-41.	7.3	20

#	Article	IF	CITATIONS
73	Central and storage carbon metabolism of the brown alga <i>Ectocarpus siliculosus</i> : insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytologist, 2010, 188, 67-81.	7.3	172
74	Role of endoreduplication and apomeiosis during parthenogenetic reproduction in the model brown alga <i>Ectocarpus</i> . New Phytologist, 2010, 188, 111-121.	7.3	54
75	The cell wall polysaccharide metabolism of the brown alga <i>Ectocarpus siliculosus</i> . Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 2010, 188, 82-97.	7.3	381
76	The <i>Ectocarpus</i> genome sequence: insights into brown algal biology and the evolutionary diversity of the eukaryotes. New Phytologist, 2010, 188, 1-4.	7.3	34
77	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	27.8	774
78	Reinstatement of Ectocarpus crouaniorum Thuret in Le Jolis as a third common species of Ectocarpus (Ectocarpales, Phaeophyceae) in Western Europe, and its phenology at Roscoff, Brittany. Phycological Research, 2010, 58, 157-170.	1.6	38
79	Cell cycles and endocycles in the model brown seaweed, <i>Ectocarpus siliculosus</i> . Plant Signaling and Behavior, 2010, 5, 1473-1475.	2.4	9
80	Auxin Metabolism and Function in the Multicellular Brown Alga <i>Ectocarpus siliculosus</i> Â Â. Plant Physiology, 2010, 153, 128-144.	4.8	103
81	Genomics of Marine Algae. , 2010, , 179-211.		2
82	03-P056 Molecular control of the alternation of generations in the brown alga Ectocarpus: The OUROBOROS mutant exhibits homeotic conversion of the sporophyte into a gametophyte. Mechanisms of Development, 2009, 126, S83.	1.7	0
83	Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evolutionary Biology, 2009, 9, 253.	3.2	77
84	Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biology, 2009, 10, R66.	9.6	138
85	The FTO Gene, Implicated in Human Obesity, Is Found Only in Vertebrates and Marine Algae. Journal of Molecular Evolution, 2008, 66, 80-84.	1.8	59
86	EARLY DEVELOPMENT PATTERN OF THE BROWN ALGA <i>ECTOCARPUS SILICULOSUS </i> (ECTOCARPALES,) Tj	ет <u>д</u> д0 0 с) rgBT /Overlc
87	Development and physiology of the brown alga <i>Ectocarpus siliculosus</i> : two centuries of research. New Phytologist, 2008, 177, 319-332.	7.3	128
88	HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics, 2008, 9, 393.	2.6	197
89	Scent evolution in Chinese roses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5927-5932.	7.1	86

90	Life-cycle-generation-specific developmental processes are modified in the <i>immediate upright</i> mutant of the brown alga <i>Ectocarpus siliculosus</i> . Development (Cambridge), 2008, 135–1503-1512	2.5	106
90	uprightmutant of the brown alga <i>Ectocarpus siliculosus</i> . Development (Cambridge), 2008, 135, 1503-1512.	2.5	10

#	Article	IF	CITATIONS
91	Production and Emission of Volatile Compounds by Petal Cells. Plant Signaling and Behavior, 2007, 2, 525-526.	2.4	21
92	Complex life cycles of multicellular eukaryotes: New approaches based on the use of model organisms. Gene, 2007, 406, 152-170.	2.2	127
93	Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta, 2007, 226, 853-866.	3.2	102
94	BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO Journal, 2006, 25, 3912-3920.	7.8	188
95	Role of Petal-Specific Orcinol O-Methyltransferases in the Evolution of Rose Scent. Plant Physiology, 2006, 140, 18-29.	4.8	67
96	A W-box is required for full expression of the SA-responsive gene SFR2. Gene, 2005, 344, 181-192.	2.2	25
97	Inheritance of organelles in artificial hybrids of the isogamous multicellular chromist algaEctocarpus siliculosus(Phaeophyceae). European Journal of Phycology, 2004, 39, 235-242.	2.0	53
98	PROPOSAL OFECTOCARPUS SILICULOSUS(ECTOCARPALES, PHAEOPHYCEAE) AS A MODEL ORGANISM FOR BROWN ALGAL GENETICS AND GENOMICS. Journal of Phycology, 2004, 40, 1079-1088.	2.3	144
99	Antisense suppression of thioredoxinhmRNA in Brassica napus cv Plant Molecular Biology, 2004, 55, 619-630.	3.9	59
100	Making inroads into plant receptor kinase signalling pathways. Trends in Plant Science, 2003, 8, 231-237.	8.8	77
101	Interaction of Calmodulin, a Sorting Nexin and Kinase-Associated Protein Phosphatase with the Brassica oleracea S Locus Receptor Kinase. Plant Physiology, 2003, 133, 919-929.	4.8	124
102	Analysis of gene expression in rose petals using expressed sequence tags. FEBS Letters, 2002, 515, 35-38.	2.8	78
103	Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel roseO-methyltransferases. FEBS Letters, 2002, 523, 113-118.	2.8	76
104	Comparison of the expression patterns of two small gene families of S gene family receptor kinase genes during the defence response in Brassica oleracea and Arabidopsis thaliana. Gene, 2002, 282, 215-225.	2.2	37
105	Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities. Current Opinion in Cell Biology, 2002, 14, 230-236.	5.4	73
106	Two large Arabidopsis thaliana gene families are homologous to the Brassica gene superfamily that encodes pollen coat proteins and the male component of the self-incompatibility response. Plant Molecular Biology, 2001, 46, 17-34.	3.9	73
107	Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Molecular Biology, 2001, 45, 365-376.	3.9	81
108	The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature, 2001, 410, 220-223.	27.8	259

#	Article	IF	CITATIONS
109	A Large Family of Genes That Share Homology withCLAVATA3. Plant Physiology, 2001, 126, 939-942.	4.8	316
110	Intrahaplotype Polymorphism at the Brassica S Locus. Genetics, 2001, 159, 811-822.	2.9	34
111	The S15 Self-Incompatibility Haplotype in Brassica oleracea Includes Three S Gene Family Members Expressed in Stigmas. Plant Cell, 1999, 11, 971-986.	6.6	81
112	A Functional S Locus Anther Gene Is Not Required for the Self-Incompatibility Response in Brassica oleracea. Plant Cell, 1997, 9, 2065.	6.6	4
113	Rapid Induction by Wounding and Bacterial Infection of an S Gene Family Receptor-Like Kinase Gene in Brassica oleracea. Plant Cell, 1997, 9, 49.	6.6	28
114	Natural antisense transcripts of the S locus receptor kinase gene and related sequences in Brassica oleracea. Molecular Genetics and Genomics, 1997, 255, 514-524.	2.4	43
115	SLR3: A modified receptor kinase gene that has been adapted to encode a putative secreted glycoprotein similar to theS locus glycoprotein. Molecular Genetics and Genomics, 1995, 248, 151-161.	2.4	22
116	Characterization of the S locus genes, SLG and SRK, of the Brassica S3 haplotype: identification of a membrane-localized protein encoded by the S locus receptor kinase gene. Plant Journal, 1995, 7, 429-440.	5.7	131
117	The S locus receptor kinase gene encodes a soluble glycoprotein corresponding to the SRK extracellular domain in Brassica oleracea. Plant Journal, 1995, 8, 827-834.	5.7	69
118	PCR-generated cDNA library of transition-stage maize embryos: cloning and expression of calmodulin genes during early embryogenesis. Plant Molecular Biology, 1995, 27, 105-113.	3.9	24
119	S-locus glycoproteins are expressed along the path of pollen tubes in Brassica pistils. Planta, 1995, 196, 614.	3.2	4
120	Characterization of three putative receptors homologous to genes of Brassica involved in self-incompatibility. Biology of the Cell, 1995, 84, 97-97.	2.0	0
121	Expression of the extracellular domain of a plant receptor in insect cells using different baculovirus vectors. Biology of the Cell, 1995, 84, 97-97.	2.0	0
122	Characterization of the gene encoding the plastid-located glutamine synthetase of Phaseolus vulgaris: regulation of ?-glucuronidase gene fusions in transgenic tobacco. Plant Molecular Biology, 1992, 18, 1141-1149.	3.9	21
123	Regulation of glutamine synthetase genes in leaves of Phaseolus vulgaris. Plant Molecular Biology, 1991, 17, 761-771.	3.9	59
124	A nuclear gene with many introns encoding ammonium-inducible chloroplastic NADP-specific glutamate dehydrogenase(s) inChlorella sorokiniana. Plant Molecular Biology, 1991, 17, 1023-1044.	3.9	26
125	RESTRICTION ENZYME ANALYSIS AND CLONING OF HIGH MOLECULAR WEIGHT GENOMIC DNA ISOLATED FROM CHLORELLA SOROKINIANA (CHLOROPHYTA)1. Journal of Phycology, 1990, 26, 361-367.	2.3	10
126	Expression of glutamine synthetase genes in roots and nodules of Phaseolus vulgaris following changes in the ammonium supply and infection with various Rhizobium mutants. Plant Molecular Biology, 1990, 14, 549-560.	3.9	47

	J.	J Mark Cock	
#	Article	IF	CITATIONS
127	A glutamate dehydrogenase gene sequence. Nucleic Acids Research, 1989, 17, 10500-10500.	14.5	5