Min Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3664517/publications.pdf

Version: 2024-02-01

		117625	197818
54	8,304	34	49
papers	citations	h-index	g-index
56	56	56	8885
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Static Magnetic Fields Reduce Oxidative Stress to Improve Wound Healing and Alleviate Diabetic Complications. Cells, 2022, $11,443$.	4.1	18
2	An Intermittent Fasting Mimicking Nutrition Bar Extends Physiologic Ketosis in Time Restricted Eating: A Randomized, Controlled, Parallel-Arm Study. Nutrients, 2021, 13, 1523.	4.1	6
3	Moderate Static Magnetic Fields Prevent Bone Architectural Deterioration and Strength Reduction in Ovariectomized Mice. IEEE Transactions on Magnetics, 2021, 57, 1-9.	2.1	5
4	Fasting-mimicking diet prevents high-fat diet effect on cardiometabolic risk and lifespan. Nature Metabolism, 2021, 3, 1342-1356.	11.9	34
5	Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature, 2020, 583, 620-624.	27.8	198
6	Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Reports, 2019, 26, 2704-2719.e6.	6.4	191
7	Brain Structure and Function Associated with Younger Adults in Growth Hormone Receptor-Deficient Humans. Journal of Neuroscience, 2017, 37, 1696-1707.	3. 6	39
8	Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Science Translational Medicine, 2017, 9, .	12.4	363
9	Fasting-Mimicking Diet Promotes Ngn3-Driven \hat{l}^2 -Cell Regeneration to Reverse Diabetes. Cell, 2017, 168, 775-788.e12.	28.9	274
10	Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLoS Biology, 2017, 15, e2001951.	5 . 6	45
11	Fasting-Mimicking Diet Reduces HO-1 to Promote TÂCell-Mediated Tumor Cytotoxicity. Cancer Cell, 2016, 30, 136-146.	16.8	289
12	Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer, 2016, 16, 360.	2.6	153
13	A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Reports, 2016, 15, 2136-2146.	6.4	371
14	Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosuppression. Cell Stem Cell, 2016, 18, 291-292.	11.1	0
15	Abstract 4313: Periodic fasting mimicking diet delays cancer development and progression. , 2016, , .		1
16	Starvation Promotes REV1 SUMOylation and p53-Dependent Sensitization of Melanoma and Breast Cancer Cells. Cancer Research, 2015, 75, 1056-1067.	0.9	35
17	A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metabolism, 2015, 22, 86-99.	16.2	635
18	Serine- and Threonine/Valine-Dependent Activation of PDK and Tor Orthologs Converge on Sch9 to Promote Aging. PLoS Genetics, 2014, 10, e1004113.	3.5	75

#	Article	IF	Citations
19	Torâ€Sch9 deficiency activates catabolism of the ketone bodyâ€like acetic acid to promote trehalose accumulation and longevity. Aging Cell, 2014, 13, 457-467.	6.7	48
20	Low Protein Intake Is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older Population. Cell Metabolism, 2014, 19, 407-417.	16.2	715
21	<scp>SIRT</scp> 1 but not its increased expression is essential for lifespan extension in caloricâ€restricted mice. Aging Cell, 2014, 13, 193-196.	6.7	99
22	Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosuppression. Cell Stem Cell, 2014, 14, 810-823.	11.1	369
23	Abstract 4120: Periodic fasting mimicking diet started late in life reduces and delays carcinogenesis. , 2014, , .		0
24	Short-term calorie and protein restriction provide partial protection from chemotoxicity but do not delay glioma progression. Experimental Gerontology, 2013, 48, 1120-1128.	2.8	71
25	Assessing Chronological Aging in Saccharomyces cerevisiae. Methods in Molecular Biology, 2013, 965, 463-472.	0.9	38
26	Protein restriction cycles reduce <scp>IGF</scp> â€1 and phosphorylated Tau, and improve behavioral performance in an Alzheimer's disease mouse model. Aging Cell, 2013, 12, 257-268.	6.7	71
27	Final results of a phase I trial of fasting prior to platinum-based chemotherapy Journal of Clinical Oncology, 2013, 31, 9632-9632.	1.6	1
28	Fasting Cycles Retard Growth of Tumors and Sensitize a Range of Cancer Cell Types to Chemotherapy. Science Translational Medicine, 2012, 4, 124ra27.	12.4	531
29	Fasting Enhances the Response of Glioma to Chemo- and Radiotherapy. PLoS ONE, 2012, 7, e44603.	2.5	169
30	Growth Hormone Receptor Deficiency Is Associated with a Major Reduction in Pro-Aging Signaling, Cancer, and Diabetes in Humans. Science Translational Medicine, 2011, 3, 70ra13.	12.4	612
31	Studying Age-dependent Genomic Instability using the S. cerevisiae Chronological Lifespan Model. Journal of Visualized Experiments, 2011, , .	0.3	7
32	Conserved role of medium acidification in chronological senescence of yeast and mammalian cells. Aging, 2011, 3, 1127-1129.	3.1	23
33	Abstract 4327: Fasting enhances the response of Gl26-glioma to radiation and multiple chemotherapies. , $2011, \ldots$		0
34	Reduced Levels of IGF-I Mediate Differential Protection of Normal and Cancer Cells in Response to Fasting and Improve Chemotherapeutic Index. Cancer Research, 2010, 70, 1564-1572.	0.9	245
35	Comparative analyses of time-course gene expression profiles of the long-lived sch9î" mutant. Nucleic Acids Research, 2010, 38, 143-158.	14.5	17
36	Genome-Wide Screen in Saccharomyces cerevisiae Identifies Vacuolar Protein Sorting, Autophagy, Biosynthetic, and tRNA Methylation Genes Involved in Life Span Regulation. PLoS Genetics, 2010, 6, e1001024.	3.5	144

#	Article	IF	Citations
37	Aging and Dietary Restriction: The Yeast Paradigm. , 2010, , 97-109.		O
38	Fasting and cancer treatment in humans: A case series report. Aging, 2009, 1, 988-1007.	3.1	305
39	Tor1/Sch9-Regulated Carbon Source Substitution Is as Effective as Calorie Restriction in Life Span Extension. PLoS Genetics, 2009, 5, e1000467.	3.5	175
40	Progesterone Influence on Neurite Outgrowth Involves Microglia. Endocrinology, 2009, 150, 324-332.	2.8	28
41	Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polî¶-dependent mechanism. Journal of Cell Biology, 2009, 186, 509-523.	5.2	71
42	Life Span Extension by Calorie Restriction Depends on Rim15 and Transcription Factors Downstream of Ras/PKA, Tor, and Sch9. PLoS Genetics, 2008, 4, e13.	3.5	378
43	Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8215-8220.	7.1	471
44	Longevity mutation in <i>SCH9</i> prevents recombination errors and premature genomic instability in a Werner/Bloom model system. Journal of Cell Biology, 2008, 180, 67-81.	5.2	64
45	Significant and Systematic Expression Differentiation in Long-Lived Yeast Strains. PLoS ONE, 2007, 2, e1095.	2.5	21
46	Macrosialin increases during normal brain aging are attenuated by caloric restriction. Neuroscience Letters, 2005, 390, 76-80.	2.1	65
47	Sir2 Blocks Extreme Life-Span Extension. Cell, 2005, 123, 655-667.	28.9	369
48	Reversible age impairments in neurite outgrowth by manipulations of astrocytic GFAP. Neurobiology of Aging, 2005, 26, 705-715.	3.1	55
49	Progressive changes in regulation of apolipoproteins E and J in glial cultures during postnatal development and aging. Neuroscience Letters, 2004, 371, 199-204.	2.1	12
50	Estradiol (E2) Enhances Neurite Outgrowth by Repressing Glial Fibrillary Acidic Protein Expression and Reorganizing Laminin. Endocrinology, 2002, 143, 636-646.	2.8	86
51	Peroxynitrite Mediates Neurotoxicity of Amyloid β-Peptide _{1–42} - and Lipopolysaccharide-Activated Microglia. Journal of Neuroscience, 2002, 22, 3484-3492.	3.6	241
52	Estradiol (E2) Enhances Neurite Outgrowth by Repressing Glial Fibrillary Acidic Protein Expression and Reorganizing Laminin. Endocrinology, 2002, 143, 636-646.	2.8	33
53	Variations of Synaptotagmin I, Synaptotagmin IV, and Synaptophysin mRNA Levels in Rat Hippocampus during the Estrous Cycle. Experimental Neurology, 1999, 159, 574-583.	4.1	30
54	Inflammation in Alzheimer's Disease. , 0, , 87-110.		2