Liheng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3664149/publications.pdf

Version: 2024-02-01

30	5,734	23	31
papers	citations	h-index	g-index
33	33	33	10732
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Utilization of machine learning to accelerate colloidal synthesis and discovery. Journal of Chemical Physics, 2021, 154, 224201.	3.0	9
2	Engineering of Ruthenium–Iron Oxide Colloidal Heterostructures: Improved Yields in CO ₂ Hydrogenation to Hydrocarbons. Angewandte Chemie - International Edition, 2019, 58, 17451-17457.	13.8	49
3	Engineering of Ruthenium–Iron Oxide Colloidal Heterostructures: Improved Yields in CO ₂ Hydrogenation to Hydrocarbons. Angewandte Chemie, 2019, 131, 17612-17618.	2.0	7
4	Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering. Chemistry of Materials, 2018, 30, 1127-1135.	6.7	43
5	Low-Temperature Restructuring of CeO ₂ -Supported Ru Nanoparticles Determines Selectivity in CO ₂ Catalytic Reduction. Journal of the American Chemical Society, 2018, 140, 13736-13745.	13.7	210
6	<i>In Situ</i> X-ray Scattering Guides the Synthesis of Uniform PtSn Nanocrystals. Nano Letters, 2018, 18, 4053-4057.	9.1	43
7	Low-Temperature Methane Partial Oxidation to Syngas with Modular Nanocrystal Catalysts. ACS Applied Nano Materials, 2018, 1, 5258-5267.	5.0	16
8	Tuning Sn-Catalysis for Electrochemical Reduction of CO ₂ to CO via the Core/Shell Cu/SnO ₂ Structure. Journal of the American Chemical Society, 2017, 139, 4290-4293.	13.7	553
9	Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion. ACS Catalysis, 2017, 7, 7810-7821.	11.2	151
10	High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature, 2017, 548, 197-201.	27.8	101
11	Stabilizing Fe Nanoparticles in the SmCo ₅ Matrix. Nano Letters, 2017, 17, 5695-5698.	9.1	44
12	Systematic Identification of Promoters for Methane Oxidation Catalysts Using Size- and Composition-Controlled Pd-Based Bimetallic Nanocrystals. Journal of the American Chemical Society, 2017, 139, 11989-11997.	13.7	109
13	Well-Defined Metal Nanoparticles for Electrocatalysis. Studies in Surface Science and Catalysis, 2017, , 123-148.	1.5	4
14	Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chemical Reviews, 2016, 116, 10473-10512.	47.7	492
15	Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 7071-7074.	13.7	299
16	New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 2015, 15, 2468-2473.	9.1	385
17	Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 11014-11022.	14.6	165
18	Synthesis and assembly of barium-doped iron oxide nanoparticles and nanomagnets. Nanoscale, 2015, 7, 16165-16169.	5.6	17

#	Article	IF	CITATIONS
19	Enzymatic Transformation of Phosphate Decorated Magnetic Nanoparticles for Selectively Sorting and Inhibiting Cancer Cells. Bioconjugate Chemistry, 2014, 25, 2129-2133.	3.6	24
20	Halide ion-mediated growth of single crystalline Fe nanoparticles. Nanoscale, 2014, 6, 4852-4856.	5.6	41
21	Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry. Journal of Chemical Education, 2014, 91, 1924-1928.	2.3	9
22	Monolayer Assembly of Ferrimagnetic Co _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ Nanocubes for Magnetic Recording. Nano Letters, 2014, 14, 3395-3399.	9.1	117
23	Monodisperse M _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction. Nano Letters, 2013, 13, 2947-2951.	9.1	421
24	Co/CoO Nanoparticles Assembled on Graphene for Electrochemical Reduction of Oxygen. Angewandte Chemie - International Edition, 2012, 51, 11770-11773.	13.8	391
25	Unique Lamellar Sodium/Potassium Iron Oxide Nanosheets: Facile Microwave-Assisted Synthesis and Magnetic and Electrochemical Properties. Chemistry of Materials, 2011, 23, 3946-3952.	6.7	42
26	Hierarchical silver indium tungsten oxide mesocrystals with morphology-, pressure-, and temperature-dependent luminescence properties. Nano Research, 2010, 3, 395-403.	10.4	22
27	Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 2010, 22, 813-828.	21.0	1,492
28	Biologically Inspired, Strong, Transparent, and Functional Layered Organic–Inorganic Hybrid Films. Angewandte Chemie - International Edition, 2010, 49, 2140-2145.	13.8	171
29	Microwave-assisted synthesis of silver indium tungsten oxide mesocrystals and their selective photocatalytic properties. Chemical Communications, 2010, 46, 2277.	4.1	79
30	Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal and photocatalytic reduction. Journal of Materials Chemistry, 2010, 20, 5190.	6.7	94