
Yuichiro Sekiguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PRODUCTION OF ALL THE <i>r</i> -PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS. Astrophysical Journal Letters, 2014, 789, L39.	8.3	491
2	Modeling GW170817 based on numerical relativity and its implications. Physical Review D, 2017, 96, .	4.7	355
3	Dynamical mass ejection from binary neutron star mergers: Radiation-hydrodynamics study in general relativity. Physical Review D, 2015, 91, .	4.7	243
4	Gravitational Waves and Neutrino Emission from the Merger of Binary Neutron Stars. Physical Review Letters, 2011, 107, 051102.	7.8	225
5	Dynamical mass ejection from the merger of asymmetric binary neutron stars: Radiation-hydrodynamics study in general relativity. Physical Review D, 2016, 93, .	4.7	218
6	Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	203
7	Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-radiation Hydrodynamics Study. Astrophysical Journal, 2018, 860, 64.	4.5	183
8	High resolution numerical relativity simulations for the merger of binary magnetized neutron stars. Physical Review D, 2014, 90, .	4.7	167
9	Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers. Physical Review D, 2015, 92, .	4.7	165
10	J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	155
11	Global simulations of strongly magnetized remnant massive neutron stars formed in binary neutron star mergers. Physical Review D, 2018, 97, .	4.7	135
12	High resolution magnetohydrodynamic simulation of black hole-neutron star merger: Mass ejection and short gamma ray bursts. Physical Review D, 2015, 92, .	4.7	120
13	Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers. Astrophysical Journal, 2018, 852, 109.	4.5	105
14	Properties of Neutrino-driven Ejecta from the Remnant of a Binary Neutron Star Merger: Pure Radiation Hydrodynamics Case. Astrophysical Journal, 2017, 846, 114.	4.5	92
15	Effects of Hyperons in Binary Neutron Star Mergers. Physical Review Letters, 2011, 107, 211101.	7.8	82
16	Mass ejection from disks surrounding a low-mass black hole: Viscous neutrino-radiation hydrodynamics simulation in full general relativity. Physical Review D, 2020, 101, .	4.7	77
17	Construction of KAGRA: an underground gravitational-wave observatory. Progress of Theoretical and Experimental Physics, 2018, 2018, .	6.6	73
18	Sub-radian-accuracy gravitational waveforms of coalescing binary neutron stars in numerical relativity. Physical Review D, 2017, 96, .	4.7	72

YUICHIRO SEKIGUCHI

#	Article	IF	CITATIONS
19	FORMATION OF BLACK HOLE AND ACCRETION DISK IN A MASSIVE HIGH-ENTROPY STELLAR CORE COLLAPSE. Astrophysical Journal, 2011, 737, 6.	4.5	67
20	Postmerger Mass Ejection of Low-mass Binary Neutron Stars. Astrophysical Journal, 2020, 901, 122.	4.5	66
21	Neutrino transport in black hole-neutron star binaries: Neutrino emission and dynamical mass ejection. Physical Review D, 2018, 97, .	4.7	57
22	Frequency-domain gravitational waveform models for inspiraling binary neutron stars. Physical Review D, 2018, 97, .	4.7	51
23	General-relativistic neutrino-radiation magnetohydrodynamic simulation of seconds-long black hole-neutron star mergers. Physical Review D, 2022, 106, .	4.7	40
24	Stellar Core Collapse in Full General Relativity with Microphysics: Formulation and Spherical Collapse Test Progress of Theoretical Physics, 2010, 124, 331-379.	2.0	39
25	Viscous evolution of a massive disk surrounding stellar-mass black holes in full general relativity. Physical Review D, 2020, 102, .	4.7	35
26	Radiation Magnetohydrodynamics for Black Hole-Torus System in Full General Relativity: A Step toward Physical Simulation. Progress of Theoretical Physics, 2012, 127, 535-559.	2.0	33
27	Sub-radian-accuracy gravitational waves from coalescing binary neutron stars in numerical relativity. II. Systematic study on the equation of state, binary mass, and mass ratio. Physical Review D, 2020, 101, .	4.7	31
28	Conservative form of Boltzmann's equation in general relativity. Physical Review D, 2014, 89, .	4.7	30
29	Gravitational waves from supermassive stars collapsing to a supermassive black hole. Physical Review D, 2016, 94, .	4.7	29
30	Gravitational collapse of rotating supermassive stars including nuclear burning effects. Physical Review D, 2017, 96, .	4.7	29
31	Long-term evolution of neutron-star merger remnants in general relativistic resistive magnetohydrodynamics with a mean-field dynamo term. Physical Review D, 2021, 104, .	4.7	28
32	Long-term evolution of a merger-remnant neutron star in general relativistic magnetohydrodynamics: Effect of magnetic winding. Physical Review D, 2021, 103, .	4.7	22
33	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
34	Ultra-delayed Neutrino-driven Explosion of Rotating Massive-star Collapse. Astrophysical Journal, 2021, 919, 80.	4.5	17
35	Alternative possibility of GW190521: Gravitational waves from high-mass black hole-disk systems. Physical Review D, 2021, 103, .	4.7	13
36	Analysis of gravitational waves from binary neutron star merger by Hilbert-Huang transform. Physical Review D, 2016, 93, .	4.7	11

YUICHIRO SEKIGUCHI

#	Article	IF	CITATIONS
37	Properties of Neutrino Transfer in a Deformed Remnant of a Neutron Star Merger. Astrophysical Journal, 2021, 907, 92.	4.5	11
38	Laser Induced Breakdown Spectroscopy of Er II for Transition Probability Measurements. Applied Sciences (Switzerland), 2022, 12, 2219.	2.5	1
39	Formation and evolution of black hole and accretion disk in collapse of massive stellar cores. Proceedings of the International Astronomical Union, 2011, 7, 305-308.	0.0	Ο
40	Nucleosynthesis in the ejecta of neutron star mergers. , 2014, , .		0
41	Nucleosynthesis in Neutron Star Mergers. , 2018, , .		0
42	Exploring Physics of Neutron Star Matter by Gravitational Waves. , 2018, , .		0
43	Nucleosynthesis in Neutrino-Driven Winds in Hypernovae. , 2017, , .		0