Chengwei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663728/publications.pdf

Version: 2024-02-01

257450 302126 1,717 58 24 39 citations g-index h-index papers 58 58 58 2124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant Journal, 2009, 60, 666-678.	5.7	145
2	The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling. Plant Physiology, 2017, 173, 2294-2307.	4.8	98
3	The Arabidopsis SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Targets Directly to <i>PINs</i> and Is Required for Root Stem Cell Niche Maintenance. Plant Cell, 2015, 27, 1670-1680.	6.6	88
4	HY5-HDA9 Module Transcriptionally Regulates Plant Autophagy in Response to Light-to-Dark Conversion and Nitrogen Starvation. Molecular Plant, 2020, 13, 515-531.	8.3	72
5	SUMO E3 Ligase AtMMS21 Regulates Drought Tolerance in <i>Arabidopsis thaliana</i> ^F . Journal of Integrative Plant Biology, 2013, 55, 83-95.	8.5	71
6	Perturbation of Auxin Homeostasis Caused by Mitochondrial FtSH4 Gene-Mediated Peroxidase Accumulation Regulates Arabidopsis Architecture. Molecular Plant, 2014, 7, 856-873.	8.3	65
7	Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response. Plant Science, 2016, 244, 1-7.	3.6	64
8	S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. Journal of Experimental Botany, 2018, 69, 4459-4468.	4.8	62
9	AtMMS21, an SMC5/6 Complex Subunit, Is Involved in Stem Cell Niche Maintenance and DNA Damage Responses in Arabidopsis Roots Â. Plant Physiology, 2013, 161, 1755-1768.	4.8	60
10	A Putative Chloroplast-Localized Ca 2+ /H + Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis. Molecular Plant, 2016, 9, 1183-1196.	8.3	59
11	Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit. Frontiers in Plant Science, 2015, 6, 845.	3.6	58
12	The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana. Plant Science, 2016, 247, 93-103.	3.6	58
13	A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry, 2017, 113, 78-88.	5.8	51
14	SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis. BMC Plant Biology, 2014, 14, 153.	3.6	50
15	Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice. Frontiers in Plant Science, 2016, 7, 1165.	3.6	44
16	The Arabidopsis SUMO E3 Ligase AtMMS21 Dissociates the E2Fa/DPa Complex in Cell Cycle Regulation. Plant Cell, 2016, 28, 2225-2237.	6.6	43
17	AtLa1 protein initiates IRESâ€dependent translation of <i>WUSCHEL</i> mRNA and regulates the stem cell homeostasis of <i>A rabidopsis</i> in response to environmental hazards. Plant, Cell and Environment, 2015, 38, 2098-2114.	5.7	38
18	SUMOylation Stabilizes the Transcription Factor DREB2A to Improve Plant Thermotolerance. Plant Physiology, 2020, 183, 41-50.	4.8	38

#	Article	IF	CITATIONS
19	Two homologous protein <i>S</i> -acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in <i>Arabidopsis</i> . Journal of Experimental Botany, 2015, 66, 6345-6353.	4.8	34
20	A SUMO Ligase AtMMS21 Regulates the Stability of the Chromatin Remodeler BRAHMA in Root Development. Plant Physiology, 2017, 173, 1574-1582.	4.8	34
21	Golgiâ€localised manganese transporter PML3 regulates <i>Arabidopsis</i> growth through modulating Golgi glycosylation and cell wall biosynthesis. New Phytologist, 2021, 231, 2200-2214.	7.3	33
22	AtMMS21 regulates DNA damage response and homologous recombination repair in Arabidopsis. DNA Repair, 2014, 21, 140-147.	2.8	31
23	Comparative proteomic approaches to analysis of litchi pulp senescence after harvest. Food Research International, 2015, 78, 274-285.	6.2	31
24	Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium. BMC Plant Biology, 2015, 15, 225.	3.6	27
25	Lectin receptor kinase OsLecRKâ€6.7 is required for pollen development and male fertility. Journal of Integrative Plant Biology, 2020, 62, 1227-1245.	8.5	24
26	Geminivirus C4: Interplaying with Receptor-like Kinases. Trends in Plant Science, 2018, 23, 1044-1046.	8.8	23
27	The Genome-Wide EMS Mutagenesis Bias Correlates With Sequence Context and Chromatin Structure in Rice. Frontiers in Plant Science, 2021, 12, 579675.	3.6	20
28	Comparative proteomics reveals the physiological differences between winter tender shoots and spring tender shoots of a novel tea (Camellia sinensis L.) cultivar evergrowing in winter. BMC Plant Biology, 2017, 17, 206.	3.6	19
29	Nuclear Prohibitin3 Maintains Genome Integrity and Cell Proliferation in the Root Meristem through Minichromosome Maintenance 2. Plant Physiology, 2019, 179, 1669-1691.	4.8	19
30	<i>OsAGSW1</i> , an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice. Journal of Experimental Botany, 2015, 66, 5691-5701.	4.8	17
31	A SWI/SNF subunit regulates chromosomal dissociation of structural maintenance complex 5 during DNA repair in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15288-15296.	7.1	16
32	The Transcriptional Coactivator ADA2b Recruits a Structural Maintenance Protein to Double-Strand Breaks during DNA Repair in Plants. Plant Physiology, 2018, 176, 2613-2622.	4.8	15
33	Post-translational modification: a strategicÂresponse to high temperature in plants. ABIOTECH, 2022, 3, 49-64.	3.9	15
34	Chromatin-associated SUMOylation controls the transcriptional switch between plant development and heat stress responses. Plant Communications, 2021, 2, 100091.	7.7	14
35	Danger peptide signaling enhances internalization of a geminivirus symptom determinant in plant cells during infection. Journal of Experimental Botany, 2020, 71, 2817-2827.	4.8	13
36	SUMOylation: A critical transcription modulator in plant cells. Plant Science, 2021, 310, 110987.	3.6	12

3

#	Article	IF	Citations
37	An ABHD17-like hydrolase screening system to identify de-S-acylation enzymes of protein substrates in plant cells. Plant Cell, 2021, 33, 3235-3249.	6.6	11
38	Importation of chloroplast proteins under heat stress is facilitated by their SUMO conjugations. New Phytologist, 2022, 235, 173-187.	7.3	11
39	BLISTER promotes seed maturation and fatty acid biosynthesis by interacting with WRINKLED1 to regulate chromatin dynamics in Arabidopsis. Plant Cell, 2022, 34, 2242-2265.	6.6	11
40	AtSIA1, an ABC1-like kinase, regulates salt response in Arabidopsis. Biologia (Poland), 2012, 67, 1107-1111.	1.5	10
41	The SWI/SNF subunit SWI3B regulates IAMT1 expression via chromatin remodeling in Arabidopsis leaf development. Plant Science, 2018, 271, 127-132.	3.6	10
42	Inhibitory mechanism of butylated hydroxyanisole against infection of Fusarium proliferatum based on comparative proteomic analysis. Journal of Proteomics, 2016, 148, 1-11.	2.4	9
43	Comparative proteomic analysis reveals differential protein and energy metabolisms from two tobacco cultivars in response to cold stress. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	9
44	A SUMO ligase AtMMS21 regulates activity of the 26S proteasome in root development. Plant Science, 2019, 280, 314-320.	3.6	9
45	Overexpression of a CPYC-Type Glutaredoxin, OsGrxC2.2, Causes Abnormal Embryos and an Increased Grain Weight in Rice. Frontiers in Plant Science, 2019, 10, 848.	3.6	8
46	Protein modification: A critical modulator in the interaction between geminiviruses and host plants. Plant, Cell and Environment, 2021, 44, 1707-1715.	5.7	8
47	Rice OsClo5, a caleosin protein, negatively regulates cold tolerance through the jasmonate signalling pathway. Plant Biology, 2022, 24, 52-61.	3.8	8
48	The <i>Arabidopsis</i> PHB3 is a pleiotropic regulator for plant development. Plant Signaling and Behavior, 2019, 14, 1656036.	2.4	7
49	Involvement of Arabidopsis CPR5 in thermotolerance. Acta Physiologiae Plantarum, 2012, 34, 2093-2103.	2.1	6
50	Resistance spectrum assay and fine mapping of the blast resistance gene from a rice experimental line, IRBLta2-Re. Euphytica, 2014, 195, 209-216.	1.2	6
51	AtMMS21: Connecting DNA Repair and Root Development. Trends in Plant Science, 2018, 23, 89-91.	8.8	6
52	The Pumilio RNAâ€binding protein APUM24 regulates seed maturation by fineâ€tuning the BPMâ€WRI1 module in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1240-1259.	8.5	6
53	A SUMO ligase OsMMS21 regulates rice development and auxin response. Journal of Plant Physiology, 2021, 263, 153447.	3. 5	6
54	Functional characterization of three maize SIZ/PIAS-type SUMO E3 ligases. Journal of Plant Physiology, 2022, 268, 153588.	3.5	6

#	Article	lF	CITATION
55	Functional characterization of a chloroplast-localized Mn2+(Ca2+)/H+ antiporter, ZmmCCHA1 from Zea mays ssp. mexicana L. Plant Physiology and Biochemistry, 2020, 155, 396-405.	5.8	4
56	Functional characterization of DiMMS21, a SUMO ligase from Desmodium intortum. Plant Physiology and Biochemistry, 2019, 141, 206-214.	5.8	2
57	The role of ascorbic acid in rice leaf senescence and photo–carbon imbalance. Functional Plant Biology, 2020, 47, 263.	2.1	2
58	Quantitative Fluorescence Resonance Energy Transfer Analysis on the Direct Interaction of Activation-2b with Histone H3/Switch-3B Protein in Arabidopsis Mesophyll Protoplasts. Journal of Fluorescence, 2021, 31, 981-988.	2.5	1