Gautam Kalghatgi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663521/publications.pdf

Version: 2024-02-01

567281 794594 2,435 27 15 19 citations g-index h-index papers 28 28 28 1508 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Is it really the end of internal combustion engines and petroleum in transport?. Applied Energy, 2018, 225, 965-974.	10.1	448
2	Mapping surrogate gasoline compositions into RON/MON space. Combustion and Flame, 2010, 157, 1122-1131.	5.2	231
3	The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 2020, 1, 100005.	4.2	229
4	Fuel Octane Effects in the Partially Premixed Combustion Regime in Compression Ignition Engines. , 0, ,		143
5	A Simple Method to Predict Knock Using Toluene, N-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates. SAE International Journal of Engines, 0, 8, 505-519.	0.4	136
6	Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends. Combustion and Flame, 2005, 140, 267-286.	5.2	130
7	Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission. SAE International Journal of Engines, 0, 6, 101-119.	0.4	102
8	Gasoline compression ignition approach to efficient, clean and affordable future engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232, 118-138.	1.9	92
9	Development of Fuel/Engine Systemsâ€"The Way Forward to Sustainable Transport. Engineering, 2019, 5, 510-518.	6.7	85
10	A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times. Fuel, 2015, 160, 458-469.	6.4	80
11	Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT). Fuel, 2017, 187, 117-127.	6.4	77
12	Future transportation fuels. Progress in Energy and Combustion Science, 2018, 69, 103-105.	31.2	72
13	Investigation into Light Duty Dieseline Fuelled Partially-Premixed Compression Ignition Engine. SAE International Journal of Engines, 0, 4, 2124-2134.	0.4	68
14	On Knock Intensity and Superknock in SI Engines. SAE International Journal of Engines, 0, 10, 1051-1063.	0.4	66
15	Fuel Effects on Knock in a Highly Boosted Direct Injection Spark Ignition Engine. SAE International Journal of Fuels and Lubricants, 0, 5, 1048-1065.	0.2	65
16	Knock onset, knock intensity, superknock and preignition in spark ignition engines. International Journal of Engine Research, 2018, 19, 7-20.	2.3	65
17	Compression Ratio and Derived Cetane Number Effects on Gasoline Compression Ignition Engine Running with Naphtha Fuels. SAE International Journal of Fuels and Lubricants, 0, 7, 412-426.	0.2	64
18	Autoignition characteristics of oxygenated gasolines. Combustion and Flame, 2017, 186, 114-128.	5.2	63

#	Article	IF	CITATIONS
19	An Alternative Method Based on Toluene/n-Heptane Surrogate Fuels for Rating the Anti-Knock Quality of Practical Gasolines. SAE International Journal of Fuels and Lubricants, 0, 7, 663-672.	0.2	45
20	Synergistic engine-fuel technologies for light-duty vehicles: Fuel economy and Greenhouse Gas Emissions. Applied Energy, 2017, 208, 1538-1561.	10.1	44
21	Leveraging the benefits of ethanol in advanced engine-fuel systems. Energy Conversion and Management, 2018, 157, 480-497.	9.2	36
22	Maximizing the benefits of high octane fuels in spark-ignition engines. Fuel, 2017, 207, 470-487.	6.4	30
23	Improving the Efficiency of Conventional Spark-Ignition Engines Using Octane-on-Demand Combustion - Part II: Vehicle Studies and Life Cycle Assessment. , 0, , .		27
24	Electrifying passenger road transport in India requires near-term electricity grid decarbonisation. Nature Communications, 2022, 13, 2095.	12.8	22
25	SuperButol™ – A novel high-octane gasoline blending component. Fuel, 2017, 195, 165-173.	6.4	9
26	Introduction to Engines and Fuels for Future Transport. Energy, Environment, and Sustainability, 2022, , 1-5.	1.0	2
27	Review of Life Cycle Analysis Studies of Less Processed Fuel for Gasoline Compression Ignition Engines. Energy, Environment, and Sustainability, 2022, , 245-273.	1.0	1