List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663479/publications.pdf Version: 2024-02-01

19657 20358 14,904 222 61 116 citations h-index g-index papers 235 235 235 10823 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cobalt ontaining spherical glass nanoparticles for therapeutic ion release. Journal of the American Ceramic Society, 2022, 105, 1765-1777.	3.8	8
2	In situ 4D tomography image analysis framework to follow sintering within 3Dâ€printed glass scaffolds. Journal of the American Ceramic Society, 2022, 105, 1671-1684.	3.8	5
3	Silver-doped calcium silicate sol-gel glasses with a cotton-wool-like structure for wound healing. Materials Science and Engineering C, 2022, 134, 112561.	7.3	7
4	Next generation bioceramics. Journal of the American Ceramic Society, 2022, 105, 1615-1616.	3.8	0
5	Effect of Polymer Molecular Mass and Structure on the Mechanical Properties of Polymer–Class Hybrids. ACS Omega, 2022, 7, 786-792.	3.5	3
6	Interaction of monodispersed strontium containing bioactive glass nanoparticles with macrophages. Materials Science and Engineering C, 2022, 133, 112610.	7.3	15
7	Particle release from dental implants immediately after placement – An ex vivo comparison of different implant systems. Dental Materials, 2022, 38, 1004-1014.	3.5	16
8	Zinc-Containing Sol–Gel Glass Nanoparticles to Deliver Therapeutic Ions. Nanomaterials, 2022, 12, 1691.	4.1	12
9	Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Materials Science and Engineering C, 2021, 118, 111393.	7.3	16
10	Tribological evaluation of a novel hybrid for repair of articular cartilage defects. Materials Science and Engineering C, 2021, 119, 111495.	7.3	13
11	Electrospun cotton–wool-like silica/gelatin hybrids with covalent coupling. Journal of Sol-Gel Science and Technology, 2021, 97, 11-26.	2.4	4
12	Laserâ€Guided Corrosion Control: A New Approach to Tailor the Degradation of Mgâ€Alloys. Small, 2021, 17, 2100924.	10.0	3
13	Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment. Acta Biomaterialia, 2021, 122, 365-376.	8.3	49
14	3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes. Materials Science and Engineering C, 2021, 123, 111964.	7.3	22
15	Corrosion Control: Laserâ€Guided Corrosion Control: A New Approach to Tailor the Degradation of Mgâ€Alloys (Small 18/2021). Small, 2021, 17, 2170080.	10.0	2
16	3D Printed Porous Methacrylate/Silica Hybrid Scaffold for Bone Substitution. Advanced Healthcare Materials, 2021, 10, e2100117.	7.6	16
17	Bone Substitutes: 3D Printed Porous Methacrylate/Silica Hybrid Scaffold for Bone Substitution (Adv.) Tj ETQq1 🔅	l 0.784314	4 rgBT /Over
18	Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium Materials Science and Engineering C 2021, 126, 112124	7.3	9

with lithium. Materials Science and Engineering C, 2021, 126, 112124.

#	Article	IF	CITATIONS
19	"Aerogel-like―polysiloxane-polyurethane hybrid foams with enhanced mechanical and thermal-insulating properties. Composites Science and Technology, 2021, 213, 108917.	7.8	21
20	Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications. Biomaterials Research, 2021, 25, 1.	6.9	65
21	Detection and Tracking Volumes of Interest in 3D Printed Tissue Engineering Scaffolds using 4D Imaging Modalities. , 2021, 2021, 1230-1233.		0
22	Bioactive glass scaffold architectures regulate patterning of bone regeneration in vivo. Applied Materials Today, 2020, 20, 100770.	4.3	16
23	Quantifying 3D Strain in Scaffold Implants for Regenerative Medicine. Materials, 2020, 13, 3890.	2.9	6
24	Exploratory Full-Field Mechanical Analysis across the Osteochondral Tissue—Biomaterial Interface in an Ovine Model. Materials, 2020, 13, 3911.	2.9	5
25	Enzyme degradable star polymethacrylate/silica hybrid inks for 3D printing of tissue scaffolds. Materials Advances, 2020, 1, 3189-3199.	5.4	9
26	Ceramics, Glasses, and Glass-Ceramics. , 2020, , 289-305.		5
27	Auto-catalytic redox polymerisation using nanoceria and glucose oxidase for double network hydrogels. Journal of Materials Chemistry B, 2020, 8, 2834-2844.	5.8	10
28	Electrospinning 3D bioactive glasses for wound healing. Biomedical Materials (Bristol), 2020, 15, 015014.	3.3	30
29	Scaffold channel size influences stem cell differentiation pathway in 3-D printed silica hybrid scaffolds for cartilage regeneration. Biomaterials Science, 2020, 8, 4458-4466.	5.4	37
30	Biodegradable zinc-containing mesoporous silica nanoparticles for cancer therapy. Materials Today Advances, 2020, 6, 100066.	5.2	30
31	Particle release from implantoplasty of dental implants and impact on cells. International Journal of Implant Dentistry, 2020, 6, 50.	2.7	38
32	Osteogenic potential of sol–gel bioactive glasses containing manganese. Journal of Materials Science: Materials in Medicine, 2019, 30, 86.	3.6	44
33	Open vessel free radical photopolymerization of double network gels for biomaterial applications using glucose oxidase. Journal of Materials Chemistry B, 2019, 7, 4030-4039.	5.8	7
34	Four-dimensional imaging and quantification of viscous flow sintering within a 3D printed bioactive glass scaffold using synchrotron X-rayÂtomography. Materials Today Advances, 2019, 2, 100011.	5.2	13
35	Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles. Acta Biomaterialia, 2019, 90, 373-392.	8.3	76
36	Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass. Biomaterials, 2019, 209, 152-162.	11.4	54

#	Article	IF	CITATIONS
37	Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontium‣ubstituted Bioactive Glass/Polycaprolactone Microfibers. Macromolecular Rapid Communications, 2019, 40, e1900019.	3.9	38
38	Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles. Journal of Colloid and Interface Science, 2019, 547, 382-392.	9.4	43
39	Acoustic Streaming in a Soft Tissue Microenvironment. Ultrasound in Medicine and Biology, 2019, 45, 208-217.	1.5	12
40	Silica/alginate hybrid biomaterials and assessment of their covalent coupling. Applied Materials Today, 2018, 11, 1-12.	4.3	33
41	The effect of serum proteins on apatite growth for 45S5 Bioglass and common sol-gel derived glass in SBF. Biomedical Glasses, 2018, 4, 13-20.	2.4	8
42	In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. Acta Biomaterialia, 2018, 66, 67-80.	8.3	99
43	Direct ink writing of highly bioactive glasses. Journal of the European Ceramic Society, 2018, 38, 837-844.	5.7	87
44	Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-11± stabilisation. Journal of the European Ceramic Society, 2018, 38, 877-886.	5.7	29
45	Bioactive glass-polycaprolactone fiber membrane and response of dental pulp stem cells in vitro. Biomedical Glasses, 2018, 4, 123-130.	2.4	7
46	The influence of cobalt incorporation and cobalt precursor selection on the structure and bioactivity of sol–gel-derived bioactive glass. Journal of Sol-Gel Science and Technology, 2018, 88, 309-321.	2.4	23
47	Laser-matter interactions in additive manufacturing of stainless steel SS316L and 13-93 bioactive glass revealed by in situ X-ray imaging. Additive Manufacturing, 2018, 24, 647-657.	3.0	57
48	Hybrids of Silica/Poly(caprolactone coglycidoxypropyl trimethoxysilane) as Biomaterials. Chemistry of Materials, 2018, 30, 3743-3751.	6.7	21
49	Silk fibroin-bioactive glass based advanced biomaterials: towards patient-specific bone grafts. Biomedical Materials (Bristol), 2018, 13, 055012.	3.3	39
50	Bouncing and 3D printable hybrids with self-healing properties. Materials Horizons, 2018, 5, 849-860.	12.2	44
51	Strategies to direct vascularisation using mesoporous bioactive glass-based biomaterials for bone regeneration. International Materials Reviews, 2017, 62, 392-414.	19.3	44
52	Functionalizing natural polymers with alkoxysilane coupling agents: reacting 3-glycidoxypropyl trimethoxysilane with poly(13-glutamic acid) and gelatin. Polymer Chemistry, 2017, 8, 1095-1103.	3.9	55
53	Tailoring the delivery of therapeutic ions from bioactive scaffolds while inhibiting their apatite nucleation: a coaxial electrospinning strategy for soft tissue regeneration. RSC Advances, 2017, 7, 3992-3999.	3.6	8
54	Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration. Acta Biomaterialia, 2017, 54, 411-418.	8.3	24

#	Article	IF	CITATIONS
55	Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses. Journal of Materials Science, 2017, 52, 8858-8870.	3.7	17
56	Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. Journal of Materials Science, 2017, 52, 8928-8941.	3.7	30
57	Construction of DNAzyme-Encapsulated Fibermats Using the Precursor Network Polymer of Poly(γ-glutamate) and 4-Glycidyloxypropyltrimethoxysilane. Langmuir, 2017, 33, 4028-4035.	3.5	6
58	Silica/methacrylate class II hybrid: telomerisation vs. RAFT polymerisation. Polymer Chemistry, 2017, 8, 3603-3611.	3.9	7
59	Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Acta Biomaterialia, 2017, 57, 449-461.	8.3	84
60	Sol–gel derived lithium-releasing glass for cartilage regeneration. Journal of Biomaterials Applications, 2017, 32, 104-113.	2.4	15
61	Effect of Comonomers on Physical Properties and Cell Attachment to Silicaâ€Methacrylate/Acrylate Hybrids for Bone Substitution. Macromolecular Rapid Communications, 2017, 38, 1700168.	3.9	9
62	Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics. Acta Biomaterialia, 2017, 50, 56-67.	8.3	56
63	Feasibility of Spatially Offset Raman Spectroscopy for in Vitro and in Vivo Monitoring Mineralization of Bone Tissue Engineering Scaffolds. Analytical Chemistry, 2017, 89, 847-853.	6.5	28
64	Phosphate content affects structure and bioactivity of solâ€gel silicate bioactive glasses. International Journal of Applied Glass Science, 2017, 8, 372-382.	2.0	23
65	Neutron diffraction study of antibacterial bioactive calcium silicate solâ€gel glasses containing silver. International Journal of Applied Class Science, 2017, 8, 364-371.	2.0	4
66	Long term effects of bioactive glass particulates on dental pulp stem cells in vitro. Biomedical Glasses, 2017, 3, .	2.4	17
67	Guest editors' preface. Journal of Materials Science, 2017, 52, 8691-8694.	3.7	0
68	Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. Journal of Sol-Gel Science and Technology, 2017, 81, 84-94.	2.4	35
69	Special Section of Papers presented at the Larry L. Hench Memorial Symposium on Bioactive Glasses at the Annual Meeting of the Glass & Optical Materials Division (GOMD) of the American Ceramic Society, held from 22nd to 26th May 2016 in Madison, Wisconsin, USA. Biomedical Glasses, 2016, 2, .	2.4	0
70	Monodispersed strontium containing bioactive glass nanoparticles and MC3T3-E1 cellular response. Biomedical Glasses, 2016, 2, .	2.4	18
71	Fabrication and inÂvitro characterization of electrospun poly (γ-glutamic acid)-silica hybrid scaffolds for bone regeneration. Polymer, 2016, 91, 106-117.	3.8	28
72	Highly porous polymer-derived wollastonite–hydroxycarbonate apatite ceramics for bone regeneration. Biomedical Materials (Bristol), 2016, 11, 025016.	3.3	7

#	Article	IF	CITATIONS
73	Tailoring Mechanical Properties of Sol–Gel Hybrids for Bone Regeneration through Polymer Structure. Chemistry of Materials, 2016, 28, 6127-6135.	6.7	46
74	Ductile silica/methacrylate hybrids for bone regeneration. Journal of Materials Chemistry B, 2016, 4, 6032-6042.	5.8	22
75	Bioglass and Bioactive Glasses and Their Impact on Healthcare. International Journal of Applied Glass Science, 2016, 7, 423-434.	2.0	226
76	Compressive Strength of Bioactive Sol–Gel Glass Foam Scaffolds. International Journal of Applied Glass Science, 2016, 7, 229-237.	2.0	26
77	A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants. Journal of Materials Science: Materials in Medicine, 2016, 27, 112.	3.6	15
78	lon Release, Hydroxyapatite Conversion, and Cytotoxicity of Boron ontaining Bioactive Glass Scaffolds. International Journal of Applied Glass Science, 2016, 7, 206-215.	2.0	48
79	3D Printing of Biocompatible Supramolecular Polymers and their Composites. ACS Applied Materials & Interfaces, 2016, 8, 3115-3122.	8.0	105
80	Controlling particle size in the Stöber process and incorporation of calcium. Journal of Colloid and Interface Science, 2016, 469, 213-223.	9.4	133
81	Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. Journal of Non-Crystalline Solids, 2016, 432, 65-72.	3.1	63
82	Bioactivity of toothpaste containing bioactive glass in remineralizing media: effect of fluoride release from the enzymatic cleavage of monofluorophosphate Biomedical Glasses, 2015, 1, .	2.4	3
83	Toward Hybrid Materials: Group Transfer Polymerization of 3â€(Trimethoxysilyl)propyl Methacrylate. Macromolecular Rapid Communications, 2015, 36, 1806-1809.	3.9	13
84	Toward Smart Implant Synthesis: Bonding Bioceramics of Different Resorbability to Match Bone Growth Rates. Scientific Reports, 2015, 5, 10677.	3.3	42
85	RAFT Polymerization of <i>N</i> â€{3â€(Trimethoxysilyl)â€propyl]acrylamide and Its Versatile Use in Silica Hybrid Materials. Macromolecular Rapid Communications, 2015, 36, 2060-2064.	3.9	8
86	Bioactive Glasses: Frontiers and Challenges. Frontiers in Bioengineering and Biotechnology, 2015, 3, 194.	4.1	250
87	Preparation of Cotton-Wool-Like Poly(lactic acid)-Based Composites Consisting of Core-Shell-Type Fibers. Materials, 2015, 8, 7979-7987.	2.9	5
88	Theranostic Mesoporous Silica Nanoparticles Biodegrade after Pro-Survival Drug Delivery and Ultrasound/Magnetic Resonance Imaging of Stem Cells. Theranostics, 2015, 5, 631-642.	10.0	172
89	Structure optimisation and biological evaluation of bone scaffolds prepared by co-sintering of silicate and phosphate glasses. Advances in Applied Ceramics, 2015, 114, S48-S55.	1.1	11
90	A structural and physical study of sol–gel methacrylate–silica hybrids: intermolecular spacing dictates the mechanical properties. Physical Chemistry Chemical Physics, 2015, 17, 29124-29133.	2.8	27

#	Article	IF	CITATIONS
91	A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. Journal of Materials Science: Materials in Medicine, 2015, 26, 115.	3.6	275
92	Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2015, 23, S53-S82.	8.3	442
93	Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 7560-7576.	5.8	78
94	A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol–gel biomaterials. Physical Chemistry Chemical Physics, 2015, 17, 2540-2549.	2.8	25
95	Hypoxia Inducible Factor-Stabilizing Bioactive Glasses for Directing Mesenchymal Stem Cell Behavior. Tissue Engineering - Part A, 2015, 21, 382-389.	3.1	56
96	Preliminary Surface Study of Short Term Dissolution of UK High Level Waste Glass. , 2014, 7, 230-236.		1
97	Bioceramic 3D Implants Produced by Laser Assisted Additive Manufacturing. Physics Procedia, 2014, 56, 309-316.	1.2	19
98	Poly(γ-glutamic acid)–silica hybrids with fibrous structure: effect of cation and silica concentration on molecular structure, degradation rate and tensile properties. RSC Advances, 2014, 4, 52491-52499.	3.6	13
99	A comparative study of oxygen diffusion in tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine, 2014, 25, 2573-2578.	3.6	24
100	Tailoring of Bone Scaffold Properties Using Silicate/Phosphate Glass Mixtures. Key Engineering Materials, 2014, 631, 283-288.	0.4	4
101	Durability studies of simulated UK high level waste glass. Materials Research Society Symposia Proceedings, 2014, 1665, 291-296.	0.1	0
102	Monodispersed Bioactive Glass Submicron Particles and Their Effect on Bone Marrow and Adipose Tissueâ€Đerived Stem Cells. Advanced Healthcare Materials, 2014, 3, 115-125.	7.6	109
103	Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1689-1699.	3.4	19
104	Silica–gelatin hybrids for tissue regeneration: inter-relationships between the process variables. Journal of Sol-Gel Science and Technology, 2014, 69, 288-298.	2.4	61
105	Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication. RSC Advances, 2014, 4, 1841-1848.	3.6	46
106	Additions and corrections for Journal of Materials Chemistry B published 11th November 2013 to 10th June 2014. Journal of Materials Chemistry B, 2014, 2, 5478.	5.8	1
107	Poly(γâ€glutamic acid)/Silica Hybrids with Calcium Incorporated in the Silica Network by Use of a Calcium Alkoxide Precursor. Chemistry - A European Journal, 2014, 20, 8149-8160.	3.3	47
108	Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. Journal of Materials Chemistry B, 2014, 2, 668-680.	5.8	109

#	Article	IF	CITATIONS
109	Additive manufactured porous titanium structures: Through-process quantification of pore and strut networks. Journal of Materials Processing Technology, 2014, 214, 2706-2715.	6.3	109
110	ToF-SIMS evaluation of calcium-containing silica/γ-PGA hybrid systems for bone regeneration. Applied Surface Science, 2014, 309, 231-239.	6.1	7
111	Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomaterialia, 2014, 10, 3733-3746.	8.3	95
112	Strategies for the chemical analysis of highly porous bone scaffolds using secondary ion mass spectrometry. Biomedical Materials (Bristol), 2014, 9, 015013.	3.3	13
113	Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Materials Science and Engineering C, 2013, 33, 4055-4062.	7.3	83
114	Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 1649-1658.	3.6	24
115	Bioactive Glass Foam Scaffolds are Remodelled by Osteoclasts and Support the Formation of Mineralized Matrix and Vascular Networks In Vitro. Advanced Healthcare Materials, 2013, 2, 490-499.	7.6	50
116	Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine. Journal of Materials Chemistry B, 2013, 1, 4446.	5.8	38
117	Novel silica/bis(3-aminopropyl) polyethylene glycol inorganic/organic hybrids byÂsol–gel chemistry. Materials Chemistry and Physics, 2013, 140, 168-175.	4.0	17
118	Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomaterialia, 2013, 9, 9169-9182.	8.3	116
119	Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomaterialia, 2013, 9, 7662-7671.	8.3	58
120	Epoxide Opening versus Silica Condensation during Sol–Gel Hybrid Biomaterial Synthesis. Chemistry - A European Journal, 2013, 19, 7856-7864.	3.3	59
121	Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2013, 9, 4457-4486.	8.3	1,839
122	POROUS BIOACTIVE CERAMIC AND GLASS SCAFFOLDS FOR BONE REGENERATION. , 2013, , 463-485.		1
123	Bioactive silica–poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter, 2012, 8, 4822.	2.7	68
124	Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. Journal of the Royal Society Interface, 2012, 9, 880-889.	3.4	150
125	Effect of Calcium Source on Structure and Properties of Sol–Gel Derived Bioactive Glasses. Langmuir, 2012, 28, 17465-17476.	3.5	87
126	Preparation of Electrospun Poly(Lactic Acid)-Based Hybrids Containing Siloxane-Doped Vaterite Particles for Bone Regeneration, Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1369-1380	3.5	7

#	Article	IF	CITATIONS
127	Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1422-1443.	3.4	115
128	Induction of hydroxycarbonate apatite formation on polyethylene or alumina substrates by spherical vaterite particles deposition. Materials Science and Engineering C, 2012, 32, 1976-1981.	7.3	2
129	Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. Journal of Materials Chemistry, 2012, 22, 1613-1619.	6.7	59
130	Transesterification of functional methacrylate monomers during alcoholic copper-catalyzed atom transfer radical polymerization: formation of compositional and architectural side products. Polymer Chemistry, 2012, 3, 2735.	3.9	9
131	Sintering and Crystallization of Phosphate Glasses by <scp><co<sub>2</co<sub></scp> â€Laser Irradiation on Hydroxyapatite Ceramics. International Journal of Applied Ceramic Technology, 2012, 9, 541-549.	2.1	4
132	Reversible aggregation of responsive polymer-stabilized colloids and the pH-dependent formation of porous scaffolds. Soft Matter, 2011, 7, 7560.	2.7	11
133	Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter, 2011, 7, 10241.	2.7	64
134	Template synthesis of ordered macroporous hydroxyapatite bioceramics. Chemical Communications, 2011, 47, 9048.	4.1	24
135	Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter, 2011, 7, 5083.	2.7	128
136	Hierarchical Porous Scaffolds for Bone Regeneration. , 2011, , 107-130.		0
137	Hydroxyapatite Coatings Incorporating Silicon Ion Releasing System on Titanium Prepared Using Water Glass and Vaterite. Journal of the American Ceramic Society, 2011, 94, 2074-2079.	3.8	11
138	Protein interactions with nanoporous sol–gel derived bioactive glasses. Acta Biomaterialia, 2011, 7, 3606-3615.	8.3	27
139	Evaluation of 3-D bioactive glass scaffolds dissolution in a perfusion flow system with X-ray microtomography. Acta Biomaterialia, 2011, 7, 2637-2643.	8.3	55
140	Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2 laser cladding. Acta Biomaterialia, 2011, 7, 3476-3487.	8.3	50
141	Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomaterialia, 2011, 7, 1807-1816.	8.3	140
142	Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials, 2011, 32, 1010-1018.	11.4	176
143	Preparation of Fibrous Scaffolds Containing Calcium and Silicon Species. Key Engineering Materials, 2011, 493-494, 840-843.	0.4	0
144	Silicate and Calcium Ions Releasing Biomaterials for Bone Reconstruction. Key Engineering Materials, 2011, 493-494, 561-565.	0.4	0

#	Article	IF	CITATIONS
145	A New Calcium Source for Bioactive Sol-Gel Hybrids. Bioceramics Development and Applications, 2011, 1, 1-3.	0.3	11
146	Synchrotron X-ray microtomography for assessment of bone tissue scaffolds. Journal of Materials Science: Materials in Medicine, 2010, 21, 847-853.	3.6	39
147	Characterisation of the inhomogeneity of sol–gel-derived SiO2–CaO bioactive glass and a strategy for its improvement. Journal of Sol-Gel Science and Technology, 2010, 53, 255-262.	2.4	29
148	Silicaâ€Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration. Advanced Functional Materials, 2010, 20, 3835-3845.	14.9	213
149	Hierarchically structured titanium foams for tissue scaffold applications. Acta Biomaterialia, 2010, 6, 4596-4604.	8.3	53
150	Preparation of electrospun siloxane-poly(lactic acid)-vaterite hybrid fibrous membranes for guided bone regeneration. Composites Science and Technology, 2010, 70, 1889-1893.	7.8	17
151	Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. Journal of Materials Chemistry, 2010, 20, 8912.	6.7	126
152	Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1373-1387.	1.8	102
153	Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. Journal of Materials Chemistry, 2010, 20, 8952.	6.7	79
154	Tailoring the nanoporosity of sol–gel derived bioactive glass using trimethylethoxysilane. Journal of Materials Chemistry, 2010, 20, 1489.	6.7	9
155	Laser Spinning of Bioactive Glass Nanofibers. Advanced Functional Materials, 2009, 19, 3084-3090.	14.9	73
156	Bioactive glass solâ€gel foam scaffolds: Evolution of nanoporosity during processing and <i>in situ</i> monitoring of apatite layer formation using small―and wideâ€angle Xâ€ray scattering. Journal of Biomedical Materials Research - Part A, 2009, 91A, 76-83.	4.0	40
157	Quantifying the 3D macrostructure of tissue scaffolds. Journal of Materials Science: Materials in Medicine, 2009, 20, 463-471.	3.6	75
158	New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society, 2009, 29, 1275-1281.	5.7	162
159	Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass® conditioned medium in the absence of osteogenic supplements. Biomaterials, 2009, 30, 3542-3550.	11.4	219
160	Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. Journal of Materials Chemistry, 2009, 19, 1276.	6.7	224
161	A comparison of three different micro-tomography systems for accurate determination of microvascular parameters. Proceedings of SPIE, 2008, , .	0.8	2
162	Porous bioactive nanostructured scaffolds for bone regeneration: a sol-gel solution. Nanomedicine, 2008, 3, 233-245.	3.3	32

#	Article	IF	CITATIONS
163	Bioactive glass. , 2008, , 266-283.		6
164	Microporous Materials. , 2008, , 1885-1893.		0
165	Characterisation of Tissue Engineering Constructs by Raman Spectroscopy and X-ray Micro-Computed Tomography (μCT). , 2008, , 421-441.		0
166	Bioactive ceramics and glasses. , 2007, , 52-71.		11
167	Transforming audit technologies: Business risk audit methodologies and the audit field. Accounting, Organizations and Society, 2007, 32, 409-438.	2.8	170
168	In vitro changes in the structure of a bioactive calcia–silica sol–gel glass explored using isotopic substitution in neutron diffraction. Journal of Non-Crystalline Solids, 2007, 353, 1854-1859.	3.1	9
169	Bioactive Class Scaffolds for Bone Regeneration. Elements, 2007, 3, 393-399.	0.5	117
170	Fabricating sol–gel glass monoliths with controlled nanoporosity. Biomedical Materials (Bristol), 2007, 2, 6-10.	3.3	12
171	A Neutron and Xâ€Ray Diffraction Study of Bioglass [®] with Reverse Monte Carlo Modelling. Advanced Functional Materials, 2007, 17, 3746-3753.	14.9	74
172	Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials, 2007, 28, 1653-1663.	11.4	256
173	<i>In situ</i> high-energy X-ray diffraction study of a bioactive calcium silicate foam immersed in simulated body fluid. Journal of Synchrotron Radiation, 2007, 14, 492-499.	2.4	10
174	Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials, 2007, 28, 1404-1413.	11.4	178
175	Effect of OH Content on the Bioactivity of Sol-Gel Derived Glass Foam Scaffolds. Key Engineering Materials, 2006, 309-311, 1031-1034.	0.4	12
176	Hierarchical porous materials for tissue engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 263-281.	3.4	150
177	Observing cell response to biomaterials. Materials Today, 2006, 9, 34-43.	14.2	39
178	Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 964-973.	11.4	612
179	Editorial: A forecast of the future for biomaterials. Journal of Materials Science: Materials in Medicine, 2006, 17, 963-964.	3.6	5
180	Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. Journal of Materials Science: Materials in Medicine, 2006, 17, 989-996.	3.6	130

#	Article	lF	CITATIONS
181	"Supercritical Carbon Dioxide in Water―Emulsion-Templated Synthesis of Porous Calcium Alginate Hydrogels. Advanced Materials, 2006, 18, 501-504.	21.0	90
182	Biomedical Applications: Tissue Engineering. , 2006, , 547-570.		8
183	Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Journal of Materials Science: Materials in Medicine, 2005, 16, 1045-1050.	3.6	93
184	Bioactive 3D scaffolds in regenerative medicine: the role of interface interactions. , 2005, , 545-572.		1
185	Using X-Ray Micro-CT Imaging to Monitor Dissolution of Macroporous Bioactive Glass Scaffolds. Key Engineering Materials, 2005, 284-286, 493-496.	0.4	1
186	Clinical applications of tissue engineering. , 2005, , 241-248.		0
187	Mechanical Behavior of Bioactive Class-Polyvinyl Alcohol Hybrid Foams Obtained by the Sol-Gel Process. Key Engineering Materials, 2005, 284-286, 757-760.	0.4	2
188	In Situ Monitoring of Chondrocyte Response to Bioactive Scaffolds Using Raman Spectroscopy. Key Engineering Materials, 2005, 284-286, 623-626.	0.4	8
189	Artificial organs. , 2005, , 142-152.		1
190	Scaffolds for tissue engineering. , 2005, , 201-214.		12
191	Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering. Advances in Applied Ceramics, 2005, 104, 35-42.	1.1	115
192	Indirect Cytotoxicity Evaluation of Silver Doped Bioglass Ag-S70C30 on Human Primary Keratinocytes. Key Engineering Materials, 2005, 284-286, 431-434.	0.4	11
193	Biomaterials, artificial organs and tissue engineering. , 2005, , .		27
194	Antimicrobial Macroporous Gel-Glasses: Dissolution and Cytotoxicity. Key Engineering Materials, 2004, 254-256, 1087-1090.	0.4	26
195	Analysis of pore interconnectivity in bioactive glass foams using X-ray microtomography. Scripta Materialia, 2004, 51, 1029-1033.	5.2	121
196	Large-Scale Production of 3D Bioactive Glass Macroporous Scaffolds for Tissue Engineering. Journal of Sol-Gel Science and Technology, 2004, 29, 179-188.	2.4	46
197	Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials, 2004, 25, 2039-2046.	11.4	391
198	Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. Journal of Biomedical Materials Research Part B, 2004, 68B, 36-44.	3.1	146

#	Article	IF	CITATIONS
199	Binary CaO-SiO(2) gel-glasses for biomedical applications. Bio-Medical Materials and Engineering, 2004, 14, 467-86.	0.6	40
200	Title is missing!. Journal of Materials Science, 2003, 38, 3783-3790.	3.7	110
201	Critical Competencies in Virtual Service Webs. European Management Journal, 2003, 21, 48-61.	5.1	5
202	In vitro release kinetics of proteins from bioactive foams. Journal of Biomedical Materials Research Part B, 2003, 67A, 121-129.	3.1	35
203	Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2P5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). Journal of Biomedical Materials Research Part B, 2003, 66A, 110-119.	3.1	227
204	Regeneration of trabecular bone using porous ceramics. Current Opinion in Solid State and Materials Science, 2003, 7, 301-307.	11.5	278
205	The Effect of 58S Bioactive Sol-Gel Derived Foams on the Growth of Murine Lung Epithelial Cells. Key Engineering Materials, 2003, 240-242, 719-724.	0.4	19
206	Effect of Porosity on the Mechanical Properties of Bioactive Foam Scaffolds. Key Engineering Materials, 2003, 240-242, 209-212.	0.4	4
207	Optimising the Strength of Macroporous Bioactive Glass Scaffolds. Key Engineering Materials, 2003, 254-256, 981-984.	0.4	6
208	Application of FTIR and Raman Spectroscopy to Characterisation of Bioactive Materials and Living Cells. Spectroscopy, 2003, 17, 275-288.	0.8	78
209	Application of Raman microspectroscopy to the characterisation of bioactive materials. Materials Characterization, 2002, 49, 255-260.	4.4	45
210	In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research Part B, 2002, 61, 301-311.	3.1	398
211	Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research Part B, 2002, 59, 340-348.	3.1	381
212	Isothermal grain coarsening of spray formed alloys in the semi-solid state. Acta Materialia, 2002, 50, 2517-2535.	7.9	135
213	Surface-modified 3D scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2002, 13, 837-842.	3.6	38
214	Biomedical materials for new millennium: perspective on the future. Materials Science and Technology, 2001, 17, 891-900.	1.6	89
215	Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. Journal of Biomedical Materials Research Part B, 2001, 58, 734-740.	3.1	349
216	Dose-dependent behavior of bioactive glass dissolution. Journal of Biomedical Materials Research Part B, 2001, 58, 720-726.	3.1	193

#	Article	IF	CITATIONS
217	The Effect of Temperature on the Processing and Properties of Macroporous Bioactive Glass Foams. Key Engineering Materials, 2001, 218-220, 299-302.	0.4	8
218	Effect of Particle Size on Bioglass [®] Dissolution. Key Engineering Materials, 2000, 192-195, 629-634.	0.4	4
219	Osteoblast Nodule Formation and Mineralisation on Foamed 58S Bioactive Glass. Key Engineering Materials, 0, 254-256, 985-988.	0.4	3
220	Bioactive Glass Scaffolds with Hierarchical Structure and their 3D Characterization. Key Engineering Materials, 0, 441, 123-137.	0.4	2
221	Developing Atom Probe Tomography to Characterize Sr-Loaded Bioactive Glass for Bone Scaffolding. Microscopy and Microanalysis, 0, , 1-11.	0.4	2
222	Bioactive, Degradable and Tough Hybrids Through Calcium and Phosphate Incorporation. Frontiers in Materials, 0, 9, .	2.4	7