Michael Hirtz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3663348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integration of Biofunctional Molecules into 3D-Printed Polymeric Micro-/Nanostructures. Polymers, 2022, 14, 1327.	4.5	4
2	Protein spot arrays on graphene oxide coatings for efficient single-cell capture. Scientific Reports, 2022, 12, 3895.	3.3	1
3	Multiplexed Covalent Patterns on Doubleâ€Reactive Porous Coating. Chemistry - an Asian Journal, 2022, ,	3.3	1
4	Evaluation of Dibenzocyclooctyne and Bicyclononyne Click Reaction on Azidoâ€Functionalized Antifouling Polymer Brushes via Microspotting. Advanced Materials Interfaces, 2022, 9, .	3.7	4
5	FluidFM-Based Fabrication of Nanopatterns: Promising Surfaces for Platelet Storage Application. ACS Applied Materials & Interfaces, 2022, 14, 24133-24143.	8.0	2
6	Controlled Surface Adhesion of Macrophages via Patterned Antifouling Polymer Brushes. Advanced NanoBiomed Research, 2021, 1, 2000029.	3.6	8
7	A multiplexed phospholipid membrane platform for curvature sensitive protein screening. Nanoscale, 2021, 13, 12642-12650.	5.6	6
8	Protein Microarray Immobilization via Epoxide Ringâ€Opening by Thiol, Amine, and Azide. Advanced Materials Interfaces, 2021, 8, 2002117.	3.7	17
9	Cucurbit[<i>n</i>]uril-Immobilized Sensor Arrays for Indicator-Displacement Assays of Small Bioactive Metabolites. ACS Applied Nano Materials, 2021, 4, 4676-4687.	5.0	17
10	Highâ€Resolution Capillary Printing of Eutectic Gallium Alloys for Printed Electronics. Advanced Materials Technologies, 2021, 6, 2100650.	5.8	9
11	Rapid Capture of Cancer Extracellular Vesicles by Lipid Patch Microarrays. Advanced Materials, 2021, 33, e2008493.	21.0	43
12	Direct-Write Patterning of Biomimetic Lipid Membranes In Situ with FluidFM. ACS Applied Materials & Interfaces, 2021, 13, 50774-50784.	8.0	7
13	High-precision tabletop microplotter for flexible on-demand material deposition in printed electronics and device functionalization. Review of Scientific Instruments, 2021, 92, 125104.	1.3	0
14	Covalently Modulated and Transiently Visible Writing: Rational Association of Two Extremes of Water Wettabilities. ACS Applied Materials & Interfaces, 2020, 12, 2935-2943.	8.0	10
15	Evaluation of Microfluidic Ceiling Designs for the Capture of Circulating Tumor Cells on a Microarray Platform. Advanced Biology, 2020, 4, 1900162.	3.0	19
16	Site-Specific Controlled Growth of Coiled Lambda-Shaped Carbon Nanofibers for Potential Application in Catalyst Support and Nanoelectronics. ACS Applied Nano Materials, 2020, 3, 7899-7907.	5.0	1
17	Thioacetateâ€Based Initiators for the Synthesis of Thiolâ€Endâ€Functionalized Poly(2â€oxazoline)s. Macromolecular Rapid Communications, 2020, 41, 2000320.	3.9	2
18	Synergies between Surface Microstructuring and Molecular Nanopatterning for Controlling Cell Populations on Polymeric Biointerfaces. Polymers, 2020, 12, 655.	4.5	7

#	Article	IF	CITATIONS
19	Enhanced Stability of Lipid Structures by Dip-Pen Nanolithography on Block-Type MPC Copolymer. Molecules, 2020, 25, 2768.	3.8	8
20	How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface?. ACS Applied Materials & Interfaces, 2020, 12, 14531-14541.	8.0	16
21	Scannerâ€Based Capillary Stamping. Advanced Functional Materials, 2020, 30, 2001531.	14.9	13
22	Printing Technologies for Integration of Electronic Devices and Sensors. NATO Science for Peace and Security Series C: Environmental Security, 2020, , 1-34.	0.2	4
23	Facilitating an International Research Experience Focused on Applied Nanotechnology and Surface Chemistry for American Undergraduate Students Collaborating with Mentors at a German Educational and Research Institution. Journal of Chemical Education, 2019, 96, 2441-2449.	2.3	5
24	Aptamer Conformation-Cooperated Enzyme-Assisted Surface-Enhanced Raman Scattering Enabling Ultrasensitive Detection of Cell Surface Protein Biomarkers in Blood Samples. ACS Sensors, 2019, 4, 2605-2614.	7.8	23
25	Writing Behavior of Phospholipids in Polymer Pen Lithography (PPL) for Bioactive Micropatterns. Polymers, 2019, 11, 891.	4.5	7
26	Development of Dipâ€Pen Nanolithography (DPN) and Its Derivatives. Small, 2019, 15, e1900564.	10.0	75
27	Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP). Beilstein Journal of Nanotechnology, 2019, 10, 2505-2515.	2.8	7
28	Locally Controlled Growth of Individual Lambdaâ€ S haped Carbon Nanofibers. Small, 2019, 15, e1803944.	10.0	2
29	Highly efficient capture of circulating tumor cells by microarray in a microfluidic device. FASEB Journal, 2019, 33, lb230.	0.5	1
30	Siteâ€5pecific Surface Functionalization via Microchannel Cantilever Spotting (µCS): Comparison between Azide–Alkyne and Thiol–Alkyne Click Chemistry Reactions. Small, 2018, 14, e1800131.	10.0	29
31	A Comparative Study of Thiolâ€Terminated Surface Modification by Click Reactions: Thiolâ€yne Coupling versus Thiolâ€ene Michael Addition. Advanced Materials Interfaces, 2018, 5, 1801343.	3.7	11
32	Combinatorial Synthesis of Macromolecular Arrays by Microchannel Cantilever Spotting (µCS). Advanced Materials, 2018, 30, e1801632.	21.0	31
33	Biomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study. ACS Nano, 2017, 11, 1613-1625.	14.6	66
34	"Molecular Activity Painting― schaltbare, lichtgesteuerte Manipulation in lebenden Zellen. Angewandte Chemie, 2017, 129, 6010-6014.	2.0	14
35	"Molecular Activity Paintingâ€: Switchâ€like, Light ontrolled Perturbations inside Living Cells. Angewandte Chemie - International Edition, 2017, 56, 5916-5920.	13.8	38
36	Clickable Antifouling Polymer Brushes for Polymer Pen Lithography. ACS Applied Materials & Interfaces, 2017, 9, 12109-12117.	8.0	33

#	Article	IF	CITATIONS
37	Polymer Pen Lithography with Lipids for Large-Area Gradient Patterns. Langmuir, 2017, 33, 8739-8748.	3.5	24
38	Phospholipid arrays on porous polymer coatings generated by micro-contact spotting. Beilstein Journal of Nanotechnology, 2017, 8, 715-722.	2.8	6
39	Clickâ€Chemistry Immobilized 3Dâ€Infused Microarrays in Nanoporous Polymer Substrates. Advanced Materials Interfaces, 2016, 3, 1500469.	3.7	16
40	Attoliter Chemistry for Nanoscale Functionalization of Graphene. ACS Applied Materials & Interfaces, 2016, 8, 33371-33376.	8.0	15
41	Ink transport modelling in Dip-Pen Nanolithography and Polymer Pen Lithography. Nanofabrication, 2016, 2, .	1.1	23
42	Multi-color polymer pen lithography for oligonucleotide arrays. Chemical Communications, 2016, 52, 12310-12313.	4.1	27
43	Self-limiting multiplexed assembly of lipid membranes on large-area graphene sensor arrays. Nanoscale, 2016, 8, 15147-15151.	5.6	23
44	Click-Chemistry Based Allergen Arrays Generated by Polymer Pen Lithography for Mast Cell Activation Studies. Small, 2016, 12, 5330-5338.	10.0	22
45	Branch Suppression and Orientation Control of Langmuir–Blodgett Patterning on Prestructured Surfaces. Advanced Materials Interfaces, 2016, 3, 1600478.	3.7	10
46	Catalyst-free site-specific surface modifications of nanocrystalline diamond films via microchannel cantilever spotting. RSC Advances, 2016, 6, 57820-57827.	3.6	14
47	Mechano―and Photochromism from Bulk to Nanoscale: Data Storage on Individual Selfâ€Assembled Ribbons. Advanced Functional Materials, 2016, 26, 5271-5278.	14.9	109
48	Densely Packed Microgoblet Laser Pairs for Crossâ€Referenced Biomolecular Detection. Advanced Science, 2015, 2, 1500066.	11.2	22
49	A Versatile Microarray Platform for Capturing Rare Cells. Scientific Reports, 2015, 5, 15342.	3.3	36
50	Multiscale Origami Structures as Interface for Cells. Angewandte Chemie - International Edition, 2015, 54, 15813-15817.	13.8	87
51	Selective Binding of DNA Origami on Biomimetic Lipid Patches. Small, 2015, 11, 5752-5758.	10.0	14
52	Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography. Nanofabrication, 2015, 2, .	1.1	22
53	Apertureless Cantilever-Free Pen Arrays for Scanning Photochemical Printing. Small, 2015, 11, 913-918.	10.0	39
54	Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography. Nanotechnology, 2015, 26, 175303.	2.6	12

#	Article	IF	CITATIONS
55	A diffusive ink transport model for lipid dip-pen nanolithography. Nanoscale, 2015, 7, 15618-15634.	5.6	29
56	Dip-Pen Nanolithography-Assisted Protein Crystallization. Journal of the American Chemical Society, 2015, 137, 154-157.	13.7	12
57	Reactive Superhydrophobic Surface and Its Photoinduced Disulfide-ene and Thiol-ene (Bio)functionalization. Nano Letters, 2015, 15, 675-681.	9.1	86
58	Diamond Nanophotonic Circuits Functionalized by Dipâ€pen Nanolithography. Advanced Optical Materials, 2015, 3, 328-335.	7.3	20
59	Phospholipid-functionalized microgoblet lasers for biomolecular detection. , 2015, , .		0
60	Vaporâ€Based Multicomponent Coatings for Antifouling and Biofunctional Synergic Modifications. Advanced Functional Materials, 2014, 24, 2281-2287.	14.9	35
61	Antifouling: Vaporâ€Based Multicomponent Coatings for Antifouling and Biofunctional Synergic Modifications (Adv. Funct. Mater. 16/2014). Advanced Functional Materials, 2014, 24, 2280-2280.	14.9	3
62	Localization and Dynamics of Glucocorticoid Receptor at the Plasma Membrane of Activated Mast Cells. Small, 2014, 10, 1991-1998.	10.0	31
63	Mesopattern of immobilised bone morphogenetic protein-2 created by microcontact printing and dip-pen nanolithography influence C2C12 cell fate. RSC Advances, 2014, 4, 56809-56815.	3.6	10
64	Advances in DNA-directed immobilization. Current Opinion in Chemical Biology, 2014, 18, 8-15.	6.1	90
65	Large‣cale Parallel Surface Functionalization of Gobletâ€ŧype Whispering Gallery Mode Microcavity Arrays for Biosensing Applications. Small, 2014, 10, 3863-3868.	10.0	36
66	Tunable Organic Heteroâ€Patterns via Molecule Diffusion Control. Small, 2014, 10, 3045-3049.	10.0	6
67	Clickâ€Chemistry Based Multi omponent Microarrays by Quillâ€Like Pens. Advanced Materials Interfaces, 2014, 1, 1300129.	3.7	24
68	HIV-1 antibodies and vaccine antigen selectively interact with lipid domains. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2662-2669.	2.6	4
69	Highâ€Performance and Tailorable Pressure Sensor Based on Ultrathin Conductive Polymer Film. Small, 2014, 10, 1466-1472.	10.0	189
70	Selective binding of oligonucleotide on TiO 2 surfaces modified by swift heavy ion beam lithography. Nuclear Instruments & Methods in Physics Research B, 2014, 339, 67-74.	1.4	5
71	Multiplexed Biomimetic Lipid Membranes on Graphene by Dip-Pen Nanolithography. Microscopy and Microanalysis, 2014, 20, 2058-2059.	0.4	1
72	Simulation Modeling of Supported Lipid Membranes – A Review. Current Topics in Medicinal Chemistry, 2014, 14, 617-623.	2.1	7

#	Article	IF	CITATIONS
73	Single―and Double‧ided Chemical Functionalization of Bilayer Graphene. Small, 2013, 9, 631-639.	10.0	49
74	Interdigitated Multicolored Bioink Micropatterns by Multiplexed Polymer Pen Lithography. Small, 2013, 9, 3266-3275.	10.0	29
75	On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink. Lab on A Chip, 2013, 13, 2701.	6.0	53
76	Selective deposition of organic molecules onto DPPC templates – A molecular dynamics study. Journal of Colloid and Interface Science, 2013, 389, 206-212.	9.4	4
77	Micropatterning: Interdigitated Multicolored Bioink Micropatterns by Multiplexed Polymer Pen Lithography (Small 19/2013). Small, 2013, 9, 3265-3265.	10.0	64
78	Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nature Communications, 2013, 4, 2591.	12.8	90
79	Porous polymer coatings as substrates for the formation of high-fidelity micropatterns by quill-like pens. Beilstein Journal of Nanotechnology, 2013, 4, 377-384.	2.8	13
80	Integrated Lasers for Polymer Lab-on-a-Chip Systems. , 2012, , .		0
81	Toxic and non-toxic aggregates from the SBMA and normal forms of androgen receptor have distinct oligomeric structures. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1070-1078.	3.8	37
82	New Approaches for Bottom-Up Assembly of Tobacco Mosaic Virus-Derived Nucleoprotein Tubes on Defined Patterns on Silica- and Polymer-Based Substrates. Langmuir, 2012, 28, 14867-14877.	3.5	34
83	Allergen Arrays for Antibody Screening and Immune Cell Activation Profiling Generated by Parallel Lipid Dipâ€Pen Nanolithography. Small, 2012, 8, 585-591.	10.0	34
84	Facile Modification of Silica Substrates Provides a Platform for Directâ€Writing Surface Click Chemistry. Small, 2012, 8, 541-545.	10.0	19
85	Site specific protein immobilization into structured polymer brushes prepared by AFM lithography. Soft Matter, 2011, 7, 9854.	2.7	24
86	Comparative Height Measurements of Dip-Pen Nanolithography-Produced Lipid Membrane Stacks with Atomic Force, Fluorescence, and Surface-Enhanced Ellipsometric Contrast Microscopy. Langmuir, 2011, 27, 11605-11608.	3.5	33
87	Highâ€Resolution Tripleâ€Color Patterns Based on the Liquid Behavior of Organic Molecules. Small, 2011, 7, 1403-1406.	10.0	24
88	Measurement of Mass Transfer during Dipâ€Pen Nanolithography with Phospholipids. Small, 2011, 7, 2081-2086.	10.0	17
89	Chemical Surface Modification of Selfâ€Assembled Monolayers by Radical Nitroxide Exchange Reactions. Chemistry - A European Journal, 2011, 17, 9107-9112.	3.3	27
90	Selective deposition of organic molecules onto different densely packed self-assembled monolayers: A molecular dynamics study. Chemical Physics Letters, 2011, 507, 138-143.	2.6	17

#	Article	IF	CITATIONS
91	Patterning of Polymer Electrodes by Nanoscratching. Advanced Materials, 2010, 22, 1374-1378.	21.0	51
92	Patterning of Functional Compounds by Multicomponent Langmuirâ^'Blodgett Transfer and Subsequent Chemical Modification. Langmuir, 2010, 26, 15388-15393.	3.5	12
93	Substrate-Independent Dip-Pen Nanolithography Based on Reactive Coatings. Journal of the American Chemical Society, 2010, 132, 18023-18025.	13.7	65
94	Anisotropic growth of organic semiconductor based on mechanical contrast of pre-patterned monolayer. Soft Matter, 2010, 6, 5302.	2.7	10
95	Control over Patterning of Organic Semiconductors: Stepâ€Edgeâ€Induced Areaâ€Selective Growth. Advanced Materials, 2009, 21, 4721-4725.	21.0	25
96	Selective Adsorption of DNA on Chiral Surfaces: Supercoiled or Relaxed Conformation. Angewandte Chemie - International Edition, 2009, 48, 5282-5286.	13.8	44
97	Structured Polymer Brushes by AFM Lithography. Small, 2009, 5, 919-923.	10.0	42
98	Influence of Substrate Treatment on Self-Organized Pattern Formation by Langmuirâ´'Blodgett Transfer. Journal of Physical Chemistry B, 2008, 112, 824-827.	2.6	15
99	Kinetics of island formation in organic film growth. Physical Review B, 2008, 77, .	3.2	18
100	Correlating Dynamics and Selectivity in Adsorption of Semiconductor Nanocrystals onto a Self-Organized Pattern. Nano Letters, 2007, 7, 3483-3488.	9.1	15
101	Langmuir–Blodgett Patterning: A Bottom–Up Way To Build Mesostructures over Large Areas. Accounts of Chemical Research, 2007, 40, 393-401.	15.6	207
102	Capillary-Induced Contact Guidance. Langmuir, 2007, 23, 10216-10223.	3.5	29
103	Fabrication of Gradient Mesostructures by Langmuirâ^'Blodgett Rotating Transfer. Langmuir, 2007, 23, 2280-2283.	3.5	32
104	Site-Selective Surface-Initiated Polymerization by Langmuir–Blodgett Lithography. Angewandte Chemie - International Edition, 2007, 46, 5231-5233.	13.8	40
105	Langmuirâ `Blodgett Patterning of Phospholipid Microstripes:  Effect of the Second Component. Journal of Physical Chemistry B, 2006, 110, 8039-8046.	2.6	40
106	Self-Organized Patterning: Regular and Spatially Tunable Luminescent Submicrometer Stripes Over Large Areas. Advanced Materials, 2005, 17, 2881-2885.	21.0	34