Xian-He Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3662991/publications.pdf

Version: 2024-02-01

6254 16650 19,347 318 80 123 citations h-index g-index papers 327 327 327 13605 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Slow Phase Transition-Induced Scan Rate Dependence of Spin Crossover in a Two-Dimensional Supramolecular Fe(III) Complex. CCS Chemistry, 2023, 5, 412-422.	7.8	2
2	Ligand Modified and Light Switched On/Off Single-Chain Magnets of {Fe ₂ Co} Coordination Polymers via Metal-to-Metal Charge Transfer. CCS Chemistry, 2023, 5, 865-875.	7.8	6
3	Metal/Covalentâ€Organic Framework Based Cathodes for Metalâ€lon Batteries. Advanced Energy Materials, 2022, 12, 2100172.	19.5	124
4	Energy Conversion in Singleâ€Crystalâ€ŧoâ€Singleâ€Crystal Phase Transition Materials. Advanced Energy Materials, 2022, 12, 2100324.	19.5	25
5	Controlled synthesis of core-shell Fe2O3@N-C with ultralong cycle life for lithium-ion batteries. Chinese Chemical Letters, 2022, 33, 1037-1041.	9.0	21
6	Engineering carbon-coated hollow hematite spheres for stable lithium-ion batteries. Journal of Solid State Chemistry, 2022, 305, 122639.	2.9	6
7	Photo Switchable Two-step Photochromism in a Series of Ln-Phosphonate(Ln=Dy, Gd, Tb, Y) Dinuclear Complexes. Chemical Research in Chinese Universities, 2022, 38, 58-66.	2.6	6
8	In-situ cation exchange enhances room temperature phosphorescence of a family of metal-organic frameworks. Science China Chemistry, 2022, 65, 128-134.	8.2	16
9	A New Hybrid Leadâ€Free Metal Halide Piezoelectric for Energy Harvesting and Human Motion Sensing. Small, 2022, 18, e2103829.	10.0	28
10	<scp>Crystallineâ€State</scp> Solvent: <scp>Metalâ€Organic</scp> Frameworks as a Platform for Intercepting <scp>Aggregationâ€Caused</scp> Quenching. Chinese Journal of Chemistry, 2022, 40, 589-596.	4.9	9
11	A "Preâ€Constrained Metal Twins―Strategy to Prepare Efficient Dualâ€Metalâ€Atom Catalysts for Cooperative Oxygen Electrocatalysis. Advanced Materials, 2022, 34, e2107421.	21.0	134
12	Temperature-Responsive Photoluminescence and Elastic Properties of 1D Lead Halide Perovskites R- and S-(Methylbenzylamine)PbBr3. Molecules, 2022, 27, 728.	3.8	5
13	Origin of Ferroelectricity in Two Prototypical Hybrid Organic–Inorganic Perovskites. Journal of the American Chemical Society, 2022, 144, 816-823.	13.7	47
14	Acetylene storage performance of [Ni(4,4′-bipyridine) ₂ (NCS) ₂] _{<i>n</i>} , a switching square lattice coordination network. Chemical Communications, 2022, 58, 1534-1537.	4.1	6
15	Editorial for the Special Issue: Dimensionality of Emerging Materials and Energy. Advanced Energy Materials, 2022, 12, .	19.5	0
16	Multifunctional Chiral 2D Lead Halide Perovskites with Circularly Polarized Photoluminescence and Piezoelectric Energy Harvesting Properties. ACS Nano, 2022, 16, 3221-3230.	14.6	52
17	Dynamic Fullâ€Color Tuning of Organic Chromophore in a Multiâ€Stimuliâ€Responsive 2D Flexible MOF. Angewandte Chemie - International Edition, 2022, 61, .	13.8	37
18	Ligand Induced Double-Chair Conformation Ln $<$ sub $>$ 12 $<$ /sub $>$ Nanoclusters Showing Multifunctional Magnetic and Proton Conductive Properties. Inorganic Chemistry, 2022, 61, 3690-3696.	4.0	8

#	Article	IF	CITATIONS
19	Dynamic Fullâ€Color Tuning of Organic Chromophore in a Multiâ€Stimuliâ€Responsive 2D Flexible MOF. Angewandte Chemie, 2022, 134, .	2.0	9
20	Coordination Polymers as Heterogeneous Catalysts for Water Splitting and CO ₂ Fixation. Crystal Growth and Design, 2022, 22, 2043-2045.	3.0	11
21	Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-Concentration Iodine at High Temperatures. Journal of the American Chemical Society, 2022, 144, 6821-6829.	13.7	89
22	Manipulating spatial alignment of donor and acceptor in host–guest MOF for TADF. National Science Review, 2022, 9, .	9.5	19
23	Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid. Nature Communications, 2022, 13, 2132.	12.8	49
24	Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nature Materials, 2022, 21, 689-695.	27.5	109
25	Ammonium Sulfate Structure-Type Hybrid Metal Halide Ferroelectric with Giant Uniaxial Spontaneous Strain., 2022, 4, 1168-1173.		9
26	Dangling Octahedra Enable Edge States in 2D Lead Halide Perovskites. Advanced Materials, 2022, 34, e2201666.	21.0	22
27	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	21.0	82
28	Programmable assembly of multiple donor-acceptor systems in metal-organic framework for heterogeneity manipulation and functions integration. Matter, 2022, 5, 2918-2932.	10.0	10
29	Energy Level Engineering: Ru Single Atom Anchored on Mo-MOF with a [Mo ₈ O ₂₆ (im) ₂] ^{4–} Structure Acts as a Biomimetic Photocatalyst. ACS Catalysis, 2022, 12, 7960-7974.	11.2	26
30	MIL-101(Fe)-derived iron oxide/carbon anode for lithium-ion batteries: Derivation process study and performance optimization. Electrochimica Acta, 2022, 426, 140794.	5.2	8
31	Elastic properties related energy conversions of coordination polymers and metal–organic frameworks. Coordination Chemistry Reviews, 2022, 470, 214692.	18.8	17
32	2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. Chemical Engineering Journal, 2021, 405, 126638.	12.7	21
33	Metal-organic materials with triazine-based ligands: From structures to properties and applications. Coordination Chemistry Reviews, 2021, 427, 213518.	18.8	29
34	Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets. Coordination Chemistry Reviews, 2021, 428, 213617.	18.8	69
35	Interconnected CoS2/NC-CNTs network as high-performance anode materials for lithium-ion batteries. Science China Materials, 2021, 64, 820-829.	6.3	47
36	A unique 3D microporous MOF constructed by cross-linking 1D coordination polymer chains for effectively selective separation of CO2/CH4 and C2H2/CH4. Chinese Chemical Letters, 2021, 32, 1153-1156.	9.0	28

#	Article	IF	Citations
37	Recent Advances on Metalâ€Organic Frameworks in the Conversion of Carbon Dioxide. Chinese Journal of Chemistry, 2021, 39, 440-462.	4.9	51
38	Electrochromic Two-dimensional Covalent Organic Framework with a Reversible Dark-to-transparent Switch. Chemical Research in Chinese Universities, 2021, 37, 185-186.	2.6	2
39	A metal–organic framework-derived Zn _{1â^'x} Cd _x S/CdS heterojunction for efficient visible light-driven photocatalytic hydrogen production. Dalton Transactions, 2021, 50, 6064-6070.	3.3	21
40	Concomitant Photoresponsive Chiroptics and Magnetism in Metal-Organic Frameworks at Room Temperature. Research, 2021, 2021, 5490482.	5.7	18
41	Aggregationâ€induced emission materials for nonlinear optics. Aggregate, 2021, 2, e28.	9.9	56
42	Self-Interpenetrated Water-Stable Microporous Metal–Organic Framework toward Storage and Purification of Light Hydrocarbons. Inorganic Chemistry, 2021, 60, 2749-2755.	4.0	26
43	A highly stable terbium metal-organic framework for efficient detection of picric acid in water. Chinese Chemical Letters, 2021, 32, 3095-3098.	9.0	15
44	Crystalline Porous Materials for Nonlinear Optics. Small, 2021, 17, e2006416.	10.0	52
45	Functionalizing MOF with Redox-Active Tetrazine Moiety for Improving the Performance as Cathode of Li–O ₂ Batteries. CCS Chemistry, 2021, 3, 1297-1305.	7.8	21
46	Highâ€Efficiency Separation of <i>n</i>)a€Hexane by a Dynamic Metalâ€Organic Framework with Reduced Energy Consumption. Angewandte Chemie - International Edition, 2021, 60, 10593-10597.	13.8	42
47	Highâ€Efficiency Separation of <i>n</i> à€Hexane by a Dynamic Metalâ€Organic Framework with Reduced Energy Consumption. Angewandte Chemie, 2021, 133, 10687-10691.	2.0	10
48	Defective Hierarchical Pore Engineering of a Zn–Ni MOF by Labile Coordination Bonding Modulation. Inorganic Chemistry, 2021, 60, 5122-5130.	4.0	19
49	Engineering Elastic Properties of Isostructural Molecular Perovskite Ferroelectrics via Bâ€Site Substitution. Small, 2021, 17, e2006021.	10.0	18
50	Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Research, 2021, 14, 4680-4688.	10.4	37
51	Dualâ€Stimuliâ€Responsive Photoluminescence of Enantiomeric Twoâ€Dimensional Lead Halide Perovskites. Advanced Optical Materials, 2021, 9, 2100003.	7.3	38
52	High Working Capacity Acetylene Storage at Ambient Temperature Enabled by a Switching Adsorbent Layered Material. ACS Applied Materials & Samp; Interfaces, 2021, 13, 23877-23883.	8.0	17
53	Recent Progress in Luminous Particleâ€Encapsulated Host–Guest Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2021, 9, 2100283.	7.3	39
54	Self-Optimized Metal–Organic Framework Electrocatalysts with Structural Stability and High Current Tolerance for Water Oxidation. ACS Catalysis, 2021, 11, 7132-7143.	11.2	77

#	Article	IF	Citations
55	Advances in Emerging Crystalline Porous Materials. Small, 2021, 17, e2102331.	10.0	6
56	Acoustic Properties of Metal-Organic Frameworks. Research, 2021, 2021, 9850151.	5.7	10
57	Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2103597.	14.9	68
58	Constructing bifunctional Co/MoC@N-C catalyst via an in-situ encapsulation strategy for efficient oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 59, 538-546.	12.9	33
59	Lanthanideâ€Hypophosphite Frameworks with Guanidinium Guest Showing High Proton Conductivity. Chinese Journal of Chemistry, 2021, 39, 3381.	4.9	3
60	Recent Progress of Nanoscale Metalâ€Organic Frameworks in Synthesis and Battery Applications. Advanced Science, 2021, 8, 2001980.	11.2	58
61	A metal–organic framework featuring highly sensitive fluorescence sensing for Al ³⁺ ions. CrystEngComm, 2021, 23, 8087-8092.	2.6	14
62	Recent advances and perspectives of metal/covalent-organic frameworks in metal-air batteries. Journal of Energy Chemistry, 2021, 63, 113-129.	12.9	25
63	Optical Properties and Applications of Crystalline Materials. Advanced Optical Materials, 2021, 9, 2102394.	7.3	6
64	Facet-engineering of NH ₂ -UiO-66 with enhanced photocatalytic hydrogen production performance. Dalton Transactions, 2021, 50, 17953-17959.	3.3	18
65	g-C ₃ N ₄ /ZnCdS heterojunction for efficient visible light-driven photocatalytic hydrogen production. RSC Advances, 2021, 11, 38120-38125.	3.6	12
66	Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials, 2020, 32, e1806445.	21.0	408
67	Halide Perovskites for Nonlinear Optics. Advanced Materials, 2020, 32, e1806736.	21.0	210
68	Functionalized Dynamic Metal–Organic Frameworks as Smart Switches for Sensing and Adsorption Applications. Topics in Current Chemistry, 2020, 378, 5.	5.8	14
69	Structural tuning of Zn(<scp>ii</scp>)-MOFs based on pyrazole functionalized carboxylic acid ligands for organic dye adsorption. CrystEngComm, 2020, 22, 5941-5945.	2.6	13
70	Recent Progress on NiFeâ€Based Electrocatalysts for the Oxygen Evolution Reaction. Small, 2020, 16, e2003916.	10.0	192
71	Supramolecular Cages Based on a Silver Complex as Adaptable Hosts for Polyâ€Aromatic Hydrocarbons. Small, 2020, 16, 2001377.	10.0	3
72	Highly stable Zn-MOF with Lewis basic nitrogen sites for selective sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2â^'} ions in aqueous systems. Journal of Coordination Chemistry, 2020, 73, 2718-2727.	2.2	17

#	Article	IF	CITATIONS
73	Metal–Organicâ€Frameworkâ€Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting. Advanced Materials, 2020, 32, e2004747.	21.0	142
74	Efficient Regulation of Energy Transfer in a Multicomponent Dye-Loaded MOF for White-Light Emission Tuning. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51589-51597.	8.0	52
75	Recent Progress in 2D Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2020, 8, 2000110.	7.3	85
76	Structural Transformation and Spatial Defect Formation of a Co(II) MOF Triggered by Varied Metal-Center Coordination Configuration. Inorganic Chemistry, 2020, 59, 9005-9013.	4.0	19
77	Crystal engineering of a rectangular $<$ b>sql $<$ b> coordination network to enable xylenes selectivity over ethylbenzene. Chemical Science, 2020, 11, 6889-6895.	7.4	26
78	Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chemical Society Reviews, 2020, 49, 2378-2407.	38.1	233
79	Thermal Transport Engineering in Hybrid Organic–Inorganic Perovskite Phononic Crystals. Journal of Physical Chemistry Letters, 2020, 11, 5728-5733.	4.6	9
80	Two Luminescent High-Nuclearity Lanthanide Clusters Ln ₄₈ (Ln = Eu and Tb) with a Nanopillar Structure. Crystal Growth and Design, 2020, 20, 5294-5301.	3.0	24
81	Confined Heteropoly Blues in Defected Zrâ€MOF (Bottle Around Ship) for Highâ€Efficiency Oxidative Desulfurization. Small, 2020, 16, e1906432.	10.0	92
82	Materials Science at Nankai: A Special Issue Dedicated to the 100th Anniversary of Nankai University. Advanced Materials, 2020, 32, e1907314.	21.0	0
83	Zinc-coordination Polymers Based on a Donor-acceptor Mix-ligand System: Syntheses, Crystal Structures and Photophysical Properties. Chemical Research in Chinese Universities, 2020, 36, 74-80.	2.6	6
84	Nonlinear Optical Perovskites: Halide Perovskites for Nonlinear Optics (Adv. Mater. 3/2020). Advanced Materials, 2020, 32, 2070017.	21.0	10
85	Oxidative Desulfurization: Confined Heteropoly Blues in Defected Zrâ€MOF (Bottle Around Ship) for Highâ€Efficiency Oxidative Desulfurization (Small 14/2020). Small, 2020, 16, 2070077.	10.0	1
86	Spin-density studies of the multiferroic metal-organic compound [NH2(CH3)2][FeIIIFeII(HCOO)6]. IUCrJ, 2020, 7, 803-813.	2.2	1
87	Benchmark selectivity $\langle i \rangle p \langle j \rangle$ -xylene separation by a non-porous molecular solid through liquid or vapor extraction. Chemical Science, 2019, 10, 8850-8854.	7.4	29
88	Innenrücktitelbild: Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation (Angew. Chem. 39/2019). Angewandte Chemie, 2019, 131, 14135-14135.	2.0	1
89	Sn nanocrystals embedded in porous TiO ₂ /C with improved capacity for sodium-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 2675-2681.	6.0	13
90	Geminiarene: A New Macrocyclic Arene with Dual/Gemini Molecular Conformation and Guest Selectivity in the Solid State. Chemical Research in Chinese Universities, 2019, 35, 745-746.	2.6	0

#	Article	IF	CITATIONS
91	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie, 2019, 131, 14028-14034.	2.0	23
92	Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and Highâ€Rate Sodiumâ€lon Batteries. Advanced Materials, 2019, 31, e1904771.	21.0	201
93	Materials chemistry at Nankai University: A special issue dedicated to the 100th anniversary of Nankai University. Science China Materials, 2019, 62, 1505-1506.	6.3	O
94	Enhanced Gas Uptake in a Microporous Metal–Organic Framework <i>via</i> a Sorbate Induced-Fit Mechanism. Journal of the American Chemical Society, 2019, 141, 17703-17712.	13.7	152
95	Engineering Bimetal Synergistic Electrocatalysts Based on Metal–Organic Frameworks for Efficient Oxygen Evolution. Small, 2019, 15, e1903410.	10.0	126
96	Carbon Layer Coated Ni ₃ S ₂ /MoS ₂ Nanohybrids as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ChemElectroChem, 2019, 6, 5603-5609.	3.4	22
97	Recent advances in luminescent metal-organic frameworks for chemical sensors. Science China Materials, 2019, 62, 1655-1678.	6.3	132
98	Fe _{1â^x} S/nitrogen and sulfur Co-doped carbon composite derived from a nanosized metalâ€"organic framework for high-performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 50-56.	6.0	26
99	Structure Switching and Modulation of the Magnetic Properties in Diaryletheneâ€Bridged Metallosupramolecular Compounds by Controlled Coordinationâ€Driven Selfâ€Assembly. Angewandte Chemie, 2019, 131, 4383-4388.	2.0	12
100	Structure Switching and Modulation of the Magnetic Properties in Diaryletheneâ€Bridged Metallosupramolecular Compounds by Controlled Coordinationâ€Driven Selfâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 4339-4344.	13.8	63
101	Two luminescent coordination polymers as highly selective and sensitive chemosensors for Cr ^{VI} -anions in aqueous medium. Dalton Transactions, 2019, 48, 387-394.	3.3	87
102	Regulating Second-Harmonic Generation by van der Waals Interactions in Two-dimensional Lead Halide Perovskite Nanosheets. Journal of the American Chemical Society, 2019, 141, 9134-9139.	13.7	75
103	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie - International Edition, 2019, 58, 13890-13896.	13.8	108
104	In-situ synthesis of molecular magnetorefrigerant materials. Coordination Chemistry Reviews, 2019, 394, 39-52.	18.8	166
105	Rational Construction of Breathing Metal–Organic Frameworks through Synergy of a Stretchy Ligand and Highly Variable π–π Interaction. ACS Applied Materials & Interfaces, 2019, 11, 20995-21003.	8.0	13
106	CO 2 Capture: Specific K + Binding Sites as CO 2 Traps in a Porous MOF for Enhanced CO 2 Selective Sorption (Small 22/2019). Small, 2019, 15, 1970118.	10.0	3
107	Electronic structures and elastic properties of a family of metal-free perovskites. Materials Chemistry Frontiers, 2019, 3, 1678-1685.	5.9	46
108	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	4.9	28

#	Article	IF	CITATIONS
109	Soft Porous Crystal Based upon Organic Cages That Exhibit Guest-Induced Breathing and Selective Gas Separation. Journal of the American Chemical Society, 2019, 141, 9408-9414.	13.7	98
110	A Giant Dy ₇₆ Cluster: A Fused Biâ€Nanopillar Structural Model for Lanthanide Clusters. Angewandte Chemie, 2019, 131, 10290-10294.	2.0	17
111	A Giant Dy ₇₆ Cluster: A Fused Biâ€Nanopillar Structural Model for Lanthanide Clusters. Angewandte Chemie - International Edition, 2019, 58, 10184-10188.	13.8	94
112	Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes. Nano Energy, 2019, 62, 154-163.	16.0	166
113	An insight into the pyrolysis process of metal–organic framework templates/precursors to construct metal oxide anode materials for lithium-ion batteries. Materials Chemistry Frontiers, 2019, 3, 1398-1405.	5.9	15
114	Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordination Chemistry Reviews, 2019, 388, 172-201.	18.8	192
115	A Dualâ€Stimuliâ€Responsive Coordination Network Featuring Reversible Wideâ€Range Luminescenceâ€Tuning Behavior. Angewandte Chemie, 2019, 131, 5670-5674.	2.0	24
116	Specific K ⁺ Binding Sites as CO ₂ Traps in a Porous MOF for Enhanced CO ₂ Selective Sorption. Small, 2019, 15, e1900426.	10.0	67
117	A Dualâ€Stimuliâ€Responsive Coordination Network Featuring Reversible Wideâ€Range Luminescenceâ€Tuning Behavior. Angewandte Chemie - International Edition, 2019, 58, 5614-5618.	13.8	132
118	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	18.8	298
119	Materials chemistry research at Nankai University – a themed collection dedicated to the 100th anniversary of Nankai University. Materials Chemistry Frontiers, 2019, 3, 2205-2206.	5.9	0
120	Metalâ€Layer Assisted Growth of Ultralong Quasiâ€2D MOF Nanoarrays on Arbitrary Substrates for Accelerated Oxygen Evolution. Small, 2019, 15, e1906086.	10.0	54
121	Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 29-104.	25.5	274
122	Metal–Organic Gelâ€Derived Fe <i>_x</i> O <i>_y</i> /Nitrogenâ€Doped Carbon Films for Enhanced Lithium Storage. Small, 2019, 15, e1804058.	10.0	31
123	Lithium-lon Batteries: Metal-Organic Gel-Derived Fe x O y /Nitrogen-Doped Carbon Films for Enhanced Lithium Storage (Small 3/2019). Small, 2019, 15, 1970018.	10.0	3
124	Structure and Emission Modulation of a Series of Cd(II) Luminescent Coordination Polymers through Guest Dependent Donor–Acceptor Interaction. Crystal Growth and Design, 2019, 19, 1391-1398.	3.0	27
125	Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage. Small, 2018, 14, e1800639.	10.0	46
126	Facile synthesis of Co ₃ O ₄ nanosheets from MOF nanoplates for high performance anodes of lithium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1602-1608.	6.0	47

#	Article	IF	Citations
127	Microporous Luminescent Metal–Organic Framework for a Sensitive and Selective Fluorescence Sensing of Toxic Mycotoxin in Moldy Sugarcane. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5618-5625.	8.0	121
128	Multi-Stimuli-Responsive Fluorescence Switching from a Pyridine-Functionalized Tetraphenylethene AlEgen. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5819-5827.	8.0	170
129	Ferroelastic Phase Transition and Switchable Dielectric Constant in Heterometallic Niccolite Formate Frameworks. Inorganic Chemistry, 2018, 57, 537-540.	4.0	13
130	Metal–Organic Framework Derived Core–Shell Co/Co ₃ O ₄ @N-C Nanocomposites as High Performance Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2018, 57, 4620-4628.	4.0	86
131	A Waterâ€Stable Luminescent Zn ^{II} Metalâ€Organic Framework as Chemosensor for Highâ€Efficiency Detection of Cr ^{VI} â€Anions (Cr ₂ O ₇ ^{2â^'}) Tj E	Т <u>о</u> д 1 1 0.	.784314 rg[
132	Enhancing the stability and porosity of penetrated metal–organic frameworks through the insertion of coordination sites. Chemical Science, 2018, 9, 950-955.	7.4	34
133	Photoinduced electron transfer and remarkable enhancement of magnetic susceptibility in bridging pyrazine complexes. Dalton Transactions, 2018, 47, 15888-15896.	3.3	18
134	Wavelength dependent nonlinear optical response of tetraphenylethene aggregation-induced emission luminogens. Materials Chemistry Frontiers, 2018, 2, 2263-2271.	5.9	36
135	PAN@ZIF-67-Derived "Gypsophila―Like CNFs@Co-CoO Composite as a Cathode for Li–O ₂ Batteries. Inorganic Chemistry, 2018, 57, 14476-14479.	4.0	22
136	Rational Construction of Highly Tunable Donor–Acceptor Materials Based on a Crystalline Host–Guest Platform. Advanced Materials, 2018, 30, e1804715.	21.0	132
137	Ultra-small V2O3 embedded N-doped porous carbon nanorods with superior cycle stability for sodium-ion capacitors. Journal of Power Sources, 2018, 405, 37-44.	7.8	54
138	Effective Co _{<i>x</i>} S _{<i>y</i>} Hydrogen Evolution Reaction Electrocatalysts Fabricated by Inâ€Situ Sulfuration of a Metalâ€"Organic Framework. ChemElectroChem, 2018, 5, 3570-3570.	3.4	3
139	Effective Co _x S _y HER Electrocatalysts Fabricated by Inâ€Situ Sulfuration of a Metalâ€Organic Framework. ChemElectroChem, 2018, 5, 3639-3644.	3.4	41
140	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	6.0	38
141	Supramolecular recognition of benzene homologues in a 2D coordination polymer through variable inter-layer π–π interaction. CrystEngComm, 2018, 20, 3313-3317.	2.6	12
142	Nitrogenâ€Doped Wrinkled Carbon Foils Derived from MOF Nanosheets for Superior Sodium Storage. Advanced Energy Materials, 2018, 8, 1801515.	19.5	158
143	A novel double-walled Cd(II) metal–organic framework as highly selective luminescent sensor for Cr2O72â~' anion. Polyhedron, 2018, 153, 110-114.	2.2	21
144	Rational design of Co embedded N,S-codoped carbon nanoplates as anode materials for high performance lithium-ion batteries. Dalton Transactions, 2018, 47, 12385-12392.	3.3	27

#	Article	IF	CITATIONS
145	Sulfonated Hollow Covalent Organic Polymer: Highlyâ€Selective Adsorption toward Cationic Organic Dyes over Anionic Ones in Aqueous Solution. Chinese Journal of Chemistry, 2018, 36, 826-830.	4.9	14
146	Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coordination Chemistry Reviews, 2018, 375, 558-586.	18.8	93
147	Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption. Chemical Communications, 2017, 53, 2394-2397.	4.1	72
148	Selective gas adsorption and fluorescence sensing response of a Zn(<scp>ii</scp>) metal–organic framework constructed by a mixed-ligand strategy. Dalton Transactions, 2017, 46, 4893-4897.	3.3	42
149	A Robust Hybrid of SnO ₂ Nanoparticles Sheathed by Nâ€Doped Carbon Derived from ZIFâ€8 as Anodes for Liâ€lon Batteries. ChemNanoMat, 2017, 3, 252-258.	2.8	23
150	Guest dependent structure and acetone sensing properties of a 2D Eu ³⁺ coordination polymer. RSC Advances, 2017, 7, 2258-2263.	3.6	39
151	Why Porous Materials Have Selective Adsorptions: A Rational Aspect from Electrodynamics. Inorganic Chemistry, 2017, 56, 2614-2620.	4.0	12
152	Two new metal–organic frameworks based on tetrazole–heterocyclic ligands accompanied by in situ ligand formation. Dalton Transactions, 2017, 46, 3223-3228.	3.3	23
153	A Niccolite Structural Multiferroic Metal–Organic Framework Possessing Four Different Types of Bistability in Response to Dielectric and Magnetic Modulation. Advanced Materials, 2017, 29, 1606966.	21.0	107
154	Improving the Stability and Gas Adsorption Performance of Acylamide Group Functionalized Zinc Metal–Organic Frameworks through Coordination Group Optimization. Crystal Growth and Design, 2017, 17, 2584-2588.	3.0	15
155	A metal–organic framework as a "turn on―fluorescent sensor for aluminum ions. Inorganic Chemistry Frontiers, 2017, 4, 256-260.	6.0	127
156	Proton-conductive metal-organic frameworks: Recent advances and perspectives. Coordination Chemistry Reviews, 2017, 344, 54-82.	18.8	258
157	Host–Guest Engineering of Coordination Polymers for Highly Tunable Luminophores Based on Charge Transfer Emissions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2662-2668.	8.0	65
158	Magnetic Structures of Heterometallic M(II)–M(III) Formate Compounds. Inorganic Chemistry, 2017, 56, 197-207.	4.0	33
159	Bimetallic metal–organic framework derived Co ₃ O ₄ –CoFe ₂ O ₄ composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Transactions, 2017, 46, 15947-15953.	3.3	43
160	Kinetic and Thermodynamic Control of Structure Transformations in a Family of Cobalt(II)–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35141-35149.	8.0	14
161	Zeolitic imidazole framework derived composites of nitrogen-doped porous carbon and reduced graphene oxide as high-efficiency cathode catalysts for Li–O ₂ batteries. Inorganic Chemistry Frontiers, 2017, 4, 1533-1538.	6.0	30
162	Construction of a Multi-Cage-Based MOF with a Unique Network for Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 26177-26183.	8.0	75

#	Article	lF	CITATIONS
163	Two Sixâ€Connected MOFs with Distinct Architecture: Synthesis, Structure, Adsorption, and Magnetic Properties. ChemPlusChem, 2016, 81, 775-779.	2.8	6
164	The First Demonstration of the Gyroid in a Polyoxometalateâ€Based Open Framework with High Proton Conductivity. Chemistry - A European Journal, 2016, 22, 9082-9086.	3.3	37
165	A new luminescent metal-organic framework for selective sensing of nitroaromatic explosives. Science China Chemistry, 2016, 59, 959-964.	8.2	48
166	Tricarboxylate-based Gd ^{III} coordination polymers exhibiting large magnetocaloric effects. Dalton Transactions, 2016, 45, 9209-9215.	3.3	106
167	Governing metal–organic frameworks towards high stability. Chemical Communications, 2016, 52, 8501-8513.	4.1	196
168	A four-fold interpenetrated metal–organic framework as a fluorescent sensor for volatile organic compounds. Dalton Transactions, 2016, 45, 14888-14892.	3.3	56
169	The First Example of Heteroâ€Tripleâ€Walled Metal–Organic Frameworks with High Chemical Stability Constructed via Flexible Integration of Mixed Molecular Building Blocks. Advanced Science, 2016, 3, 1500283.	11.2	33
170	Preface: Special topic on Metal-organic frameworks (MOFs). Science China Chemistry, 2016, 59, 927-928.	8.2	16
171	Yolk–Shell MnO@ZnMn ₂ O ₄ /N–C Nanorods Derived from <i>α</i> â€MnO ₂ /ZIFâ€8 as Anode Materials for Lithium Ion Batteries. Small, 2016, 12, 5564-5571.	10.0	130
172	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie, 2016, 128, 15251-15254.	2.0	16
173	A new Co(<scp>ii</scp>) metal–organic framework with enhanced CO ₂ adsorption and separation performance. Inorganic Chemistry Frontiers, 2016, 3, 1510-1515.	6.0	27
174	Temperature-Related Synthesis of Two Anionic Metal–Organic Frameworks with Distinct Performance in Organic Dye Adsorption. Crystal Growth and Design, 2016, 16, 5593-5597.	3.0	53
175	A Water-Stable Metal–Organic Framework with a Double-Helical Structure for Fluorescent Sensing. Inorganic Chemistry, 2016, 55, 7326-7328.	4.0	83
176	High Proton Conduction in Two Co ^{II} and Mn ^{II} Anionic Metal–Organic Frameworks Derived from 1,3,5-Benzenetricarboxylic Acid. Crystal Growth and Design, 2016, 16, 6776-6780.	3.0	73
177	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie - International Edition, 2016, 55, 15027-15030.	13.8	166
178	Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18621-18627.	10.3	188
179	High-performance fluorescence sensing of lanthanum ions (La ³⁺) by a polydentate pyridyl-based quinoxaline derivative. Dalton Transactions, 2016, 45, 10836-10841.	3.3	17
180	Cluster- and chain-based magnetic MOFs derived from 3d metal ions and 1,3,5-benzenetricarboxylate. New Journal of Chemistry, 2016, 40, 2680-2686.	2.8	12

#	Article	IF	Citations
181	Construction of a polyhedron decorated MOF with a unique network through the combination of two classic secondary building units. Chemical Communications, 2016, 52, 2079-2082.	4.1	36
182	Structural and magnetic modulations of copper(<scp>ii</scp>) azido complexes: unexpected in situ reactions of mono-N-donor pyridine-based co-ligands. Dalton Transactions, 2016, 45, 1514-1524.	3.3	17
183	Structural stabilization of a metal–organic framework for gas sorption investigation. Dalton Transactions, 2016, 45, 6830-6833.	3.3	21
184	Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand. Dalton Transactions, 2016, 45, 7866-7874.	3.3	10
185	A chiral lanthanide metal–organic framework for selective sensing of Fe(<scp>iii</scp>) ions. Dalton Transactions, 2016, 45, 1040-1046.	3.3	269
186	Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications. Advanced Materials, 2015, 27, 5432-5441.	21.0	470
187	Anionâ€Triggered Modulation of Structure and Magnetic Properties of Copper(I)–Dysprosium(III) Complexes Derived from 1â€Hydroxybenzotriazolate. European Journal of Inorganic Chemistry, 2015, 2015, 5379-5386.	2.0	11
188	A three dimensional magnetically frustrated metal–organic framework <i>via</i> the vertices augmentation of underlying net. Chemical Communications, 2015, 51, 4627-4630.	4.1	31
189	A new anionic metal–organic framework showing tunable emission by lanthanide(III) doping and highly selective CO ₂ adsorption properties. RSC Advances, 2015, 5, 24655-24660.	3.6	9
190	Two microporous MOFs constructed from different metal cluster SBUs for selective gas adsorption. Chemical Communications, 2015, 51, 14211-14214.	4.1	51
191	A unique "cage-in-cage―metal–organic framework based on nested cages from interpenetrated networks. CrystEngComm, 2015, 17, 5884-5888.	2.6	15
192	Two Gd ^{III} complexes derived from dicarboxylate ligands as cryogenic magnetorefrigerants. New Journal of Chemistry, 2015, 39, 6970-6975.	2.8	52
193	Ln ^{III} ion dependent magnetism in heterometallic Cu–Ln complexes based on an azido group and 1,2,3-triazole-4,5-dicarboxylate as co-ligands. RSC Advances, 2015, 5, 62319-62324.	3.6	7
194	Crystalline Capsules: Metal–Organic Frameworks Locked by Sizeâ€Matching Ligand Bolts. Angewandte Chemie - International Edition, 2015, 54, 5966-5970.	13.8	135
195	A triphenylene-based conjugated microporous polymer: construction, gas adsorption, and fluorescence detection properties. RSC Advances, 2015, 5, 15350-15353.	3.6	14
196	Two robust metal–organic frameworks with uncoordinated N atoms for CO ₂ adsorption. CrystEngComm, 2015, 17, 8198-8201.	2.6	12
197	MOF-Derived Porous Co ₃ O ₄ Hollow Tetrahedra with Excellent Performance as Anode Materials for Lithium-lon Batteries. Inorganic Chemistry, 2015, 54, 8159-8161.	4.0	142
198	A high-performance "sweeper―for toxic cationic herbicides: an anionic metal–organic framework with a tetrapodal cage. Chemical Communications, 2015, 51, 17439-17442.	4.1	72

#	Article	IF	Citations
199	Structure modulation in zinc–ditetrazolate coordination polymers by in situ ligand synthesis. RSC Advances, 2015, 5, 88809-88815.	3.6	6
200	Ratiometric fluorescence detection of fluoride ion by indole-based receptor. Talanta, 2015, 131, 597-602.	5.5	18
201	A series of cobalt and nickel clusters based on thiol-containing ligands accompanied by in situ ligand formation. Dalton Transactions, 2015, 44, 560-567.	3.3	28
202	A flexible zwitterion ligand based lanthanide metal–organic framework for luminescence sensing of metal ions and small molecules. Dalton Transactions, 2015, 44, 10914-10917.	3.3	124
203	Hydro(solvo)thermal synthetic strategy towards azido/formato-mediated molecular magnetic materials. Coordination Chemistry Reviews, 2015, 289-290, 32-48.	18.8	86
204	A three-dimensional metal–organic framework for selective sensing of nitroaromatic compounds. APL Materials, 2014, 2, .	5.1	44
205	Perspectives on Electron-Assisted Reduction for Preparation of Highly Dispersed Noble Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 3-13.	6.7	91
206	Solvent-induced structural diversities from discrete cup-shaped Co ₈ clusters to Co ₈ cluster-based chains accompanied by in situ ligand conversion. CrystEngComm, 2014, 16, 753-756.	2.6	33
207	Li-ion storage and gas adsorption properties of porous polyimides (PIs). RSC Advances, 2014, 4, 7506.	3.6	91
208	Tuning the magnetic behaviors in [FellI12LnIII4] clusters with aromatic carboxylate ligands. Inorganic Chemistry Frontiers, 2014, 1, 200-206.	6.0	35
209	Magnetocaloric effect and slow magnetic relaxation in two dense (3,12)-connected lanthanide complexes. Inorganic Chemistry Frontiers, 2014, 1, 549-552.	6.0	89
210	A luminescent metal–organic framework demonstrating ideal detection ability for nitroaromatic explosives. Journal of Materials Chemistry A, 2014, 2, 1465-1470.	10.3	396
211	Zn(II)-Benzotriazolate Clusters Based Amide Functionalized Porous Coordination Polymers with High CO ₂ Adsorption Selectivity. Inorganic Chemistry, 2014, 53, 8842-8844.	4.0	62
212	A Mixed Molecular Building Block Strategy for the Design of Nested Polyhedron Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 837-841.	13.8	189
213	Two hexaazatriphenylene based selective off–on fluorescent chemsensors for cadmium(II). Talanta, 2014, 119, 632-638.	5.5	16
214	Targeted Structure Modulation of "Pillar-Layered―Metal–Organic Frameworks for CO2 Capture. Inorganic Chemistry, 2014, 53, 8985-8990.	4.0	82
215	A polypyridyl-pyrene based off-on Cd2+ fluorescent sensor for aqueous phase analysis and living cell imaging. Talanta, 2014, 128, 278-283.	5.5	25
216	Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism. Scientific Reports, 2014, 4, 6023.	3.3	32

#	Article	IF	Citations
217	Nitrogen-rich diaminotriazine-based porous organic polymers for small gas storage and selective uptake. Polymer Chemistry, 2013, 4, 4690.	3.9	136
218	A Cu(i) metal–organic framework with 4-fold helical channels for sensing anions. Chemical Science, 2013, 4, 3678.	7.4	251
219	Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities. Scientific Reports, 2013, 3, 3312.	3.3	136
220	A Controllable Gate Effect in Cobalt(II) Organic Frameworks by Reversible Structure Transformations. Angewandte Chemie - International Edition, 2013, 52, 11550-11553.	13.8	302
221	Edge-directed assembly of a 3D 2p–3d heterometallic metal–organic framework based on a cubic Co8(TzDC)12 cage. CrystEngComm, 2013, 15, 9344.	2.6	15
222	Mn(ii) metal–organic frameworks based on Mn3 clusters: from 2D layer to 3D framework by the "pillaring―approach. CrystEngComm, 2013, 15, 1613.	2.6	60
223	Microporous metal–organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. Journal of Materials Chemistry A, 2013, 1, 495-499.	10.3	233
224	Slow Magnetic Relaxation in Two New 1D/0D Dy ^{III} Complexes with a Sterically Hindered Carboxylate Ligand. Inorganic Chemistry, 2013, 52, 2103-2109.	4.0	99
225	Bottom-up assembly of a porous MOF based on nanosized nonanuclear zinc precursors for highly selective gas adsorption. Journal of Materials Chemistry A, 2013, 1, 4186.	10.3	55
226	In vitro controlled release of theophylline from metal–drug complexes. Journal of Materials Chemistry B, 2013, 1, 3879.	5.8	32
227	The Role of Order–Disorder Transitions in the Quest for Molecular Multiferroics: Structural and Magnetic Neutron Studies of a Mixed Valence Iron(II)–Iron(III) Formate Framework. Journal of the American Chemical Society, 2012, 134, 19772-19781.	13.7	127
228	Structure Modulation in Zn(II)–1,4-Bis(imidazol-1-yI)benzene Frameworks by Varying Dicarboxylate Anions. Crystal Growth and Design, 2012, 12, 189-196.	3.0	162
229	New chiral coordination polymers constructed from well elaborated achiral and chiral ligands. RSC Advances, 2012, 2, 4348.	3.6	13
230	Employing Zinc Clusters as SBUs To Construct (3,8) and (3,14)-Connected Coordination Networks: Structures, Topologies, and Luminescence. Crystal Growth and Design, 2012, 12, 2730-2735.	3.0	77
231	A New 10-Connected Coordination Network with Pentanuclear Zinc Clusters as Secondary Building Units. Crystal Growth and Design, 2012, 12, 1064-1068.	3.0	84
232	Ratiometric and Selective Fluorescent Sensor for Zn ²⁺ as an "Off–On–Off―Switch and Logic Gate. Inorganic Chemistry, 2012, 51, 9642-9648.	4.0	108
233	Construction and adsorption properties of microporous tetrazine-based organic frameworks. RSC Advances, 2012, 2, 408-410.	3.6	46
234	Cadmium(ii) and zinc(ii) metal–organic frameworks with anthracene-based dicarboxylic ligands: solvothermal synthesis, crystal structures, and luminescent properties. CrystEngComm, 2011, 13, 5152.	2.6	71

#	Article	IF	Citations
235	Microporous Metal–Organic Framework Based on Supermolecular Building Blocks (SBBs): Structure Analysis and Selective Gas Adsorption Properties. Crystal Growth and Design, 2011, 11, 2050-2053.	3.0	66
236	An Fe-based MOF constructed from paddle-wheel and rod-shaped SBUs involved in situ generated acetate. CrystEngComm, 2011, 13, 6002.	2.6	38
237	Three interpenetrated copper(II) coordination polymers based on a V-shaped ligand: Synthesis, structures, sorption and magnetic properties. Science China Chemistry, 2011, 54, 1446-1453.	8.2	13
238	Thermodynamic study of axial coordination reaction of zinc porphyrin with metal Schiff base and imidazole complex. Chinese Journal of Chemistry, 2010, 17, 438-447.	4.9	4
239	Structural and Spectroscopic Studies on $[Cu(DACH)2(H2O)]$ -Cl2 (DACH = 1,4-Diazacycloheptane). Chinese Journal of Chemistry, 2010, 20, 29-33.	4.9	0
240	Cadmium(ii) coordination polymers based on a bulky anthracene-based dicarboxylate ligand: crystal structures and luminescent properties. CrystEngComm, 2010, 12, 1833.	2.6	50
241	Metal–organic coordination architectures of bis(1,2,4-triazole) ligands bearing different spacers: syntheses, structures and luminescent properties. CrystEngComm, 2010, 12, 3587.	2.6	19
242	Zeolite-like Metalâ^'Organic Framework Based on a Flexible 2-(1 <i>H</i> -benzimidazol-2-ylthio)acetic Ligand: Synthesis, Structures, and Properties. Crystal Growth and Design, 2010, 10, 1878-1884.	3.0	18
243	Magnetic Behavior Control in Niccolite Structural Metal Formate Frameworks [NH ₂ (CH ₃) ₂][Fe ^{III} M ^{II} (HCOO) ₆] (M = Fe, Mn, and Co) by Varying the Divalent Metal Ions. Inorganic Chemistry, 2010, 49, 10390-10399.	4.0	123
244	Zn ^{II} and Hg ^{II} Complexes with 2,3-Substituted-5,6-di($1 < i > H < i > -tetrazol-5-y $) pyrazine Ligands: Roles of Substituting Groups and Synthetic Conditions on the Formation of Complexes. Crystal Growth and Design, 2010, 10, 564-574.	3.0	21
245	New Three-Dimensional Porous Metal Organic Framework with Tetrazole Functionalized Aromatic Carboxylic Acid: Synthesis, Structure, and Gas Adsorption Properties. Inorganic Chemistry, 2010, 49, 11581-11586.	4.0	133
246	Template-directed synthesis of three new open-framework metal(ii) oxalates using Co(iii) complex as template. CrystEngComm, 2010, 12, 4198.	2.6	60
247	Zn ^{II} Coordination Poylmers Based on 2,3,6,7-Anthracenetetracarboxylic Acid: Synthesis, Structures, and Luminescence Properties. Crystal Growth and Design, 2009, 9, 4840-4846.	3.0	103
248	Varying Ligand Backbones for Modulating the Interpenetration of Coordination Polymers Based on Homoleptic Cobalt(II) Nodes. Crystal Growth and Design, 2009, 9, 3904-3909.	3.0	105
249	Zinc and Cadmium Coordination Polymers with Bis(tetrazole) Ligands Bearing Flexible Spacers: Synthesis, Crystal Structures, and Properties. Crystal Growth and Design, 2009, 9, 2280-2286.	3.0	103
250	Interconversion of two new nickel(II) coordination polymers with different topologies: synthesis, structure and magnetic properties. Journal of Materials Chemistry, 2009, 19, 6827.	6.7	9
251	CoL(SO4)0.5 ·Â4H2O and MnL2 · 2H2O (L = 1,10-Phenanthroline-4,5-f-triazolate): Synthesis, Crystal Structures and Hydrogen-Bonded Networks. Journal of Chemical Crystallography, 2008, 38, 931-936.	1.1	5
252	Metal Coordination Architectures of 2,3â€Bis(triazolâ€1â€ylmethyl)quinoxaline: Effect of Metal Ion and Counterion on Complex Structures. European Journal of Inorganic Chemistry, 2008, 2008, 1059-1066.	2.0	30

#	Article	IF	Citations
253	Structural Diversity and Modulation of Coordination Architectures with Flexible Dithioether or Disulfoxide Ligands. European Journal of Inorganic Chemistry, 2008, 2008, 27-40.	2.0	33
254	Zinc(ii) coordination architectures with two bulky anthracene-based carboxylic ligands: crystal structures and luminescent properties. CrystEngComm, 2008, 10, 681.	2.6	102
255	Novel Ag(I) complexes with azole heterocycle ligands bearing acetic acid group: synthesis, characterization and crystal structures. CrystEngComm, 2008, 10, 1037.	2.6	50
256	Zn(<scp>ii</scp>) coordination architectures with mixed ligands of dipyrido[3,2-d â^¶â€‰2′,3′-f]quinoxaline/2,3-di-2-pyridylquinoxaline and benzenedicarboxylate: synthestructures, and photoluminescence properties. CrystEngComm, 2008, 10, 349-356.	es e s6cryst	al 104
257	Tuning silver(I) coordination architectures by ligands design: from dinuclear, trinuclear, to 1D and 3D frameworks. CrystEngComm, 2008, 10, 1866.	2.6	85
258	Silver(I) coordination architectures with quinoxaline-based N,S-donor ligands: structures and luminescent properties. CrystEngComm, 2008, 10, 1595.	2.6	8
259	Coordination architectures of 2-(1H-tetrazol-5-yl)pyrazine with group IIB metal ions: luminescence and structural dependence on the metal ions and preparing conditions. CrystEngComm, 2008, 10, 699.	2.6	53
260	Metal Coordination Architectures of 1,4-Bis(imidazol-1-ylmethyl)naphthalene:Â Syntheses, Crystal Structures, and Theoretical Investigations on the Coordination Properties of the Ligand. Crystal Growth and Design, 2007, 7, 286-295.	3.0	46
261	Metal–organic coordination architectures of 9,10-bis(N-benzimidazolyl)anthracene: syntheses, structures and emission properties. CrystEngComm, 2007, 9, 412-420.	2.6	26
262	Arenedisulfonate–lanthanide supramolecular architectures with phenanthroline as a co-ligand: syntheses and structures. CrystEngComm, 2007, 9, 902.	2.6	33
263	Detailed Mechanism for CO Oxidation on AuNi3(111) Extended Surface:  A Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 12335-12339.	3.1	15
264	Copper(II), Cobalt(II), and Nickel(II) Complexes with a Bulky Anthracene-Based Carboxylic Ligand:  Syntheses, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2007, 46, 6299-6310.	4.0	142
265	New d10metal–organic coordination polymers with 9,10-bis(triazol-1-ylmethyl)anthracene (L): Syntheses, crystal structures, and luminescent properties. CrystEngComm, 2007, 9, 289-297.	2.6	56
266	Cd(II) Coordination Architectures with Mixed Ligands of 3-(2-Pyridyl)pyrazole and Pendant Carboxylate Ligands Bearing Different Aromatic Skeletons:  Syntheses, Crystal Structures, and Emission Properties. Crystal Growth and Design, 2006, 6, 656-663.	3.0	177
267	Syntheses, Structure, and Properties of the Metal Complexes with 3-(2-Pyridyl)pyrazole-Based Ligands: Tuning the Complex Structures by Ligand Modifications. Crystal Growth and Design, 2006, 6, 99-108.	3.0	44
268	Molecular Cage and 1-D Coordination Architectures Assembled from Silver(I) and Dithioether Ligands with Bulky Anthrene Spacers:  Syntheses, Crystal Structures, and Emission Properties. Crystal Growth and Design, 2006, 6, 648-655.	3.0	34
269	Synthesis and crystal structure of a silver(I) complex with dithioether ligand. Journal of Chemical Crystallography, 2006, 36, 211-215.	1.1	2
270	Towards the Design of Linear Homo-Trinuclear Metal Complexes Based on a New Phenol-Functionalised Diazamesocyclic Ligand: Structural Analysis and Magnetism. European Journal of Inorganic Chemistry, 2005, 2005, 294-304.	2.0	38

#	Article	IF	Citations
271	Lanthanide Complexes of Disulfoxide Ligands with Varied Configurations: Influence of Lanthanide Contraction on the Structures of the Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 1913-1918.	2.0	6
272	Synthesis and crystal structure of a 1D disulfoxide-lanthanide(III) complex {[La(L)2(DMF)4](ClO4)3} n [L = 1,6-bis(ethylsulfinyl)hexane]. Journal of Coordination Chemistry, 2005, 58, 1659-1666.	2.2	1
273	Syntheses and crystal structures of the copper(i) complexes with quinoline-based monothioether ligands. CrystEngComm, 2005, 7, 249.	2.6	68
274	Tuning the topologies of MnII complexes with 3-(2-pyridyl)pyrazole and carboxylate ligands by intramolecular hydrogen bonds and the geometries of pendant ligands: crystal structures and magnetic properties. CrystEngComm, 2005, 7, 722.	2.6	38
275	Formation of 3D networks by H-bonding from novel trinuclear or 1D chain complexes of zinc(ii) and cadmium(ii) with isonicotinic acid analogues and the effects of Ï€â€"Ï€ stacking. CrystEngComm, 2005, 7, 411.	2.6	18
276	Synthesis, Structures, and Magnetic Properties of the Copper(II), Cobalt(II), and Manganese(II) Complexes with 9-Acridinecarboxylate and 4-Quinolinecarboxylate Ligands. Inorganic Chemistry, 2005, 44, 9837-9846.	4.0	91
277	Novel Silver(I) Coordination Polymers with a Series of Bis(arylthio)ether Ligands Bearing atrans-2-Butene Backbone. Crystal Growth and Design, 2005, 5, 215-222.	3.0	41
278	Synthesis and crystal structure of a 2D (6,3) coordination network, $\{[Ag(L)1.5]NO3\}n[L = 1,3-bis(benzylthio)propane]$. Journal of Chemical Crystallography, 2004, 34, 501-505.	1.1	9
279	A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network. Angewandte Chemie - International Edition, 2004, 43, 192-195.	13.8	558
280	The First (Trisulfoxide) metal Complexes: Synthesis and Crystal Structures of the 1D Lanthanide Coordination Polymers $[Ln(L)(MeOH)(NO3)3]n$ and $\{[La(L)(DMF)5](ClO4)3\}n$ $[L=1,3,5-Tris(ethylsulfinyl)-2,4,6-trimethylbenzene, Ln=Lalll and Ndlll]. European Journal of Inorganic Chemistry, 2004, 2004, 1701-1704.$	2.0	10
281	First Tetranuclear Coll Cluster with Planar Triangular Pattern: Crystal Structure and Ferromagnetic Behavior. European Journal of Inorganic Chemistry, 2004, 2004, 3228-3231.	2.0	31
282	Lanthanide perchlorate complexes with 1,4-bis(phenylsulfinyl)butane: structures and luminescent properties. New Journal of Chemistry, 2004, 28, 261.	2.8	39
283	Effect of Anions on the Framework Formation of Novel AglCoordination Polymers with Angular Bridging Ligands. Crystal Growth and Design, 2004, 4, 71-78.	3.0	81
284	New Silver(I) Complexes of Pyridyl Dithioether Ligands with Ag–Ag Interactions: Effects of Anions and Ligand Spacers on the Framework Formations of Complexes. Journal of Cluster Science, 2003, 14, 471-482.	3.3	23
285	Adjusting the Frameworks of Silver(I) Complexes with New Pyridyl Thioethers by Varying the Chain Lengths of Ligand Spacers, Solvents, and Counteranions. Inorganic Chemistry, 2003, 42, 7422-7430.	4.0	134
286	Tuning the framework formation of silver(i) coordination architectures with heterocyclic thioethers. Dalton Transactions, 2003, , 1509-1514.	3.3	78
287	Formation of novel discrete silver(i) coordination architectures with quinoline-based monothioethers: adjusting the intramolecular Agâc Ag distances and complex structures by ligands modifications and variations of counter anions. Dalton Transactions, 2003, , 4742-4748.	3.3	51
288	Modifying silver(I) coordination frameworks containing a flexible dithioether ligand by variation of counter anions. CrystEngComm, 2003, 5, 96-100.	2.6	29

#	Article	IF	CITATIONS
289	Chiral Noninterpenetrated (10,3)-a Net in the Crystal Structure of Ag(I) and Bisthioether. Inorganic Chemistry, 2002, 41, 437-439.	4.0	127
290	A Novel Two-Dimensional Non-Interpenetrating Coordination Polymer [Ag2.5L(NO3)2.5] \hat{a} with three different coordination modes of AgI (L = diquinoxalino[2,3-a:2 \hat{a} \in 2,3 \hat{a} \in 2-c]phenazine). Journal of Chemical Research, 2002, 2002, 493-495.	1.3	3
291	Controlling the Framework Formation of Silver(I) Coordination Polymers with 1,4-Bis(phenylthio)butane by Varying the Solvents, Metal-to-Ligand Ratio, and Counteranions. Inorganic Chemistry, 2002, 41, 3477-3482.	4.0	257
292	Novel Five-Connected Lanthanide(III)â^Bis(sulfinyl) Coordination Polymers Forming a Unique Two-Dimensional (, 5) Network. Inorganic Chemistry, 2002, 41, 413-415.	4.0	70
293	Novel Lanthanide(III) Coordination Polymers with 1,4-Bis(phenyl-sulfinyl)butane Forming Unique Lamellar Square Array:Â Syntheses, Crystal Structures, and Properties. Inorganic Chemistry, 2002, 41, 1007-1010.	4.0	53
294	New Mononuclear, Cyclic Tetranuclear, and 1-D Helical-Chain Cu(II) Complexes Formed by Metal-Assisted Hydrolysis of 3,6-Di-2-pyridyl-1,2,4,5-tetrazine (DPTZ):Â Crystal Structures and Magnetic Properties. Inorganic Chemistry, 2002, 41, 1855-1861.	4.0	86
295	{[Cd(bpo)(SCN)2]·CH3CN}n:  A Novel Three-Dimensional (3D) Noninterpenetrated Channel-Like Open Framework with Porous Properties. Crystal Growth and Design, 2002, 2, 625-629.	3.0	47
296	Ferromagnetic coupling in a unique Cu(II) metallacyclophane with functionalized diazamesocyclic ligands formed by Cu(II)-directed self-assembly: magneto-structural correlations for dichloro-bridged Cu(II) dinuclear complexes. New Journal of Chemistry, 2002, 26, 645-650.	2.8	41
297	Structural and first magnetic characterization of unique mono-µ-chloro bridged dinuclear Cull complexes with heterocycle-functionalized diazamesocyclic ligands. New Journal of Chemistry, 2002, 26, 939-945.	2.8	40
298	Proton-controlled inter-conversion between an achiral discrete molecular square and a chiral interpenetrated double-chain architecture. Chemical Communications, 2002, , 2550-2551.	4.1	57
299	Title is missing!. Journal of Chemical Crystallography, 2002, 32, 57-61.	1.1	17
300	Title is missing!. Journal of Chemical Crystallography, 2002, 32, 127-131.	1.1	4
301	Novel copper(II) complexes with diazamesocyclic ligands functionalized by additional donor group(s): syntheses, crystal structures and magnetic properties. Dalton Transactions RSC, 2001, , 729-735.	2.3	61
302	Spontaneously Resolved Chiral Interpenetrating 3-D Nets with Two Different Zinc Coordination Polymers. Journal of the American Chemical Society, 2001, 123, 10750-10751.	13.7	113
303	The first Agi-bis(sulfinyl) coordination polymer forming a unique macrometallacyclic lamellar network. CrystEngComm, 2001, 3, 131.	2.6	8
304	Novel nickel(II) complexes with diazamesocyclic ligands functionalized by additional phenol donor pendant(s): synthesis, characterization, crystal structures and magnetic properties. Dalton Transactions RSC, 2001, , 593-598.	2.3	83
305	Novel Organic Crystals as Candidates for Frequency Up-Converted Materials: Syntheses and Crystal Structures of Two Tröger's Bases. Journal of Chemical Research, 2001, 2001, 243-245.	1.3	9
306	Novel Diazamesocyclic Ligands Functionalized with Pyridyl Donor Group(s) â° Synthesis, Crystal Structures, and Properties of Their Copper(II) Complexes. European Journal of Inorganic Chemistry, 2001, 2001, 1551-1558.	2.0	46

#	Article	IF	CITATIONS
307	A New Dinuclear Copper (II) Complex of a Bisâ€macrocyclic Ligand: Synthesis, Characterization, Crystal Structure and Magnetic Properties. Chinese Journal of Chemistry, 2001, 19, 778-782.	4.9	1
308	Structural and Spectral Studies on the Ni(II) Complexes of 1,5â€Diazacyclooctane (DACO) Bearing Heterocyclic Pendants: Formation of a Twoâ€dimensional Network via Hydrogen Bonds and Ï€â€Ï€ Stacking Interactions. Chinese Journal of Chemistry, 2001, 19, 860-865.	4.9	3
309	Novel Diazamesocyclic Ligands Functionalized with Pyridyl Donor Group(s) â^' Synthesis, Crystal Structures, and Properties of Their Copper(II) Complexes., 2001, 2001, 1551.		1
310	Title is missing!. Journal of Chemical Crystallography, 2000, 30, 531-534.	1.1	5
311	Varying Coordination Modes and Magnetic Properties of Copper(II) Complexes with Diazamesocyclic Ligands by Altering Additional Donor Pendants on 1,5-Diazacyclooctane. Inorganic Chemistry, 2000, 39, 4190-4199.	4.0	76
312	Synthesis and Characterization of Binuclear Lanthanide Complexes of 1,4,7,10-Tetrakis(2-Pyridylmethyl)-1,4,7,10-Tetraazacyclododecane. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1998, 28, 1127-1143.	1.8	4
313	Title is missing!. Transition Metal Chemistry, 1997, 22, 513-515.	1.4	12
314	SPECTROSCOPIC AND ELECTROCHEMICAL STUDIES OF THE OXIDATION OF PARA-SUBSTITUTED TETRAPHENYLPORPHINATO MANGANESE (II) COMPLEXES. Journal of Coordination Chemistry, 1996, 39, 161-168.	2.2	1
315	Crystal, Molecular and Electronic Structures of Complexes of N-(ortho-Methyl)-AndN-(ortho-Methoxy)-Phenyliminodiacetatocopper(II). Journal of Coordination Chemistry, 1992, 25, 43-51.	2.2	6
316	Tuning of spin-crossover behavior in two cyano-bridged mixed-valence FeIII2FeII trinuclear complexes based on a TpR ligand. Inorganic Chemistry Frontiers, 0, , .	6.0	6
317	Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angewandte Chemie, 0, , .	2.0	7
318	Removable urea solves the COF dilemma. Science China Chemistry, 0, , .	8.2	0