David Gilot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3662936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGFβâ€induced FOXS1 controls epithelial–mesenchymal transition and predicts a poor prognosis in liver cancer. Hepatology Communications, 2022, 6, 1157-1171.	4.3	9
2	Canine Oral Melanoma Genomic and Transcriptomic Study Defines Two Molecular Subgroups with Different Therapeutical Targets. Cancers, 2022, 14, 276.	3.7	3
3	Blockade of the proâ€fibrotic reaction mediated by the miRâ€143/â€145 cluster enhances the responses to targeted therapy in melanoma. EMBO Molecular Medicine, 2022, 14, e15295.	6.9	12
4	Human <i>TYRP1</i> : Two functions for a single gene?. Pigment Cell and Melanoma Research, 2021, 34, 836-852.	3.3	13
5	CRISPR screens identify tumorâ€promoting genes conferring melanoma cell plasticity and resistance. EMBO Molecular Medicine, 2021, 13, e13466.	6.9	16
6	Detrimental activation of AhR pathway in cancer: an overview of therapeutic strategies. Current Opinion in Immunology, 2021, 70, 15-26.	5.5	41
7	Involvement of Kynurenine Pathway in Hepatocellular Carcinoma. Cancers, 2021, 13, 5180.	3.7	9
8	Involvement of caspaseâ€1 in inflammasomes activation and bacterial clearance in <scp> <i>S. aureus</i> </scp> â€infected osteoblastâ€like <scp>MG</scp> â€63 cells. Cellular Microbiology, 2020, 22, e13204.	2.1	8
9	The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1594.	6.4	162
10	Modulation of Bacterial sRNAs Activity by Epigenetic Modifications: Inputs from the Eukaryotic miRNAs. Genes, 2019, 10, 22.	2.4	10
11	miRNA displacement as a promising approach for cancer therapy. Molecular and Cellular Oncology, 2018, 5, e1406432.	0.7	5
12	Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nature Communications, 2018, 9, 4775.	12.8	70
13	A non-coding function of TYRP1 mRNA promotes melanoma growth. Nature Cell Biology, 2017, 19, 1348-1357.	10.3	73
14	Discovery of Human-Similar Gene Fusions in Canine Cancers. Cancer Research, 2017, 77, 5721-5727.	0.9	22
15	Definition and identification of small RNA sponges: Focus on miRNA sequestration. Methods, 2017, 117, 35-47.	3.8	20
16	p53 Requires the Stress Sensor USF1 to Direct Appropriate Cell Fate Decision. PLoS Genetics, 2014, 10, e1004309.	3.5	31
17	Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature, 2014, 511, 184-190.	27.8	574
18	RNAi-Based Screening Identifies Kinases Interfering with Dioxin-Mediated Up-Regulation of CYP1A1 Activity. PLoS ONE, 2011, 6, e18261.	2.5	18

DAVID GILOT

#	Article	IF	CITATIONS
19	Akti-1/2, an allosteric inhibitor of Akt 1 and 2, efficiently inhibits CaMKIα activity and aryl hydrocarbon receptor pathway. Chemico-Biological Interactions, 2010, 188, 546-552.	4.0	21
20	Activation of the Aryl Hydrocarbon Receptor by the Calcium/Calmodulin-Dependent Protein Kinase Kinase Inhibitor 7-Oxo-7 <i>H</i> -benzimidazo[2,1- <i>a</i>]benz[de]isoquinoline-3-carboxylic Acid (STO-609). Drug Metabolism and Disposition, 2008, 36, 2556-2563.	3.3	26
21	Dioxin-Mediated Up-Regulation of Aryl Hydrocarbon Receptor Target Genes Is Dependent on the Calcium/Calmodulin/CaMKIα Pathway. Molecular Pharmacology, 2008, 73, 769-777.	2.3	60
22	AhR- and c-maf-dependent induction of β7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochemical and Biophysical Research Communications, 2007, 358, 442-448.	2.1	29
23	Aryl Hydrocarbon Receptor- and Calcium-dependent Induction of the Chemokine CCL1 by the Environmental Contaminant Benzo[a]pyrene. Journal of Biological Chemistry, 2006, 281, 19906-19915.	3.4	99