
David C Zawieja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3661965/publications.pdf Version: 2024-02-01

ΠΛΛΙΟ C ΖΛΙΛΙΕΙΛ

#	Article	IF	CITATIONS
1	Effect of the snake venom component crotamine on lymphatic endothelial cell responses and lymph transport. Microcirculation, 2023, 30, .	1.8	5
2	Intracellular calcium dynamics of lymphatic endothelial and muscle cells co-cultured in a Lymphangion-Chip under pulsatile flow. Analyst, The, 2022, 147, 2953-2965.	3.5	2
3	Analysis of Lymphatic Vessel Formation by Whole-Mount Immunofluorescence Staining. Methods in Molecular Biology, 2021, 2319, 153-159.	0.9	1
4	Isolation of Lymphatic Muscle Cells (LMCs) from Rat Mesentery. Methods in Molecular Biology, 2021, 2319, 137-141.	0.9	1
5	Cartiotonic steroids affect monolayer permeability in lymphatic endothelial cells. Molecular and Cellular Biochemistry, 2021, 476, 3207-3213.	3.1	1
6	Dichotomous effects on lymphatic transport with loss of caveolae in mice. Acta Physiologica, 2021, 232, e13656.	3.8	4
7	Effect of Rapamycin on Contractility of Lymphatic Vessel and Energy Metabolism of Lymphatic Muscle Cells. FASEB Journal, 2021, 35, .	0.5	0
8	Quantifying Lymphatic Endothelial Cell Morphological Changes in Response to Fluid Shear Stress, Cyclic Strain, or Combined Stress and Strain In Vitro. FASEB Journal, 2021, 35, .	0.5	0
9	A multiscale sliding filament model of lymphatic muscle pumping. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2179-2202.	2.8	6
10	Targeting Lymphangiogenesis and Lymph Node Metastasis in Liver Cancer. American Journal of Pathology, 2021, 191, 2052-2063.	3.8	22
11	Lymphangion-chip: a microphysiological system which supports co-culture and bidirectional signaling of lymphatic endothelial and muscle cells. Lab on A Chip, 2021, 22, 121-135.	6.0	13
12	Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidaseâ€A/5â€Hydroxytryptamine/5â€Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis. Hepatology, 2020, 71, 990-1008.	7.3	23
13	Hydrodynamic regulation of lymphatic vessel transport function and the impact of aging. , 2020, , 55-92.		Ο
14	Histamine-mediated autocrine signaling in mesenteric perilymphatic mast cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R590-R604.	1.8	14
15	Altered rodent gait characteristics after ~35 days in orbit aboard the International Space Station. Life Sciences in Space Research, 2020, 24, 9-17.	2.3	3
16	Inflammatory state of lymphatic vessels and miRNA profiles associated with relapse in ovarian cancer patients. PLoS ONE, 2020, 15, e0230092.	2.5	4
17	The Role of Lymphatics in Cholestasis: A Comprehensive Review. Seminars in Liver Disease, 2020, 40, 403-410.	3.6	4
18	Ca ²⁺ release-activated Ca ²⁺ channels are responsible for histamine-induced Ca ²⁺ entry, permeability increase, and interleukin synthesis in lymphatic endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1283-H1295.	3.2	6

#	Article	IF	CITATIONS
19	DSS-induced colitis produces inflammation-induced bone loss while irisin treatment mitigates the inflammatory state in both gut and bone. Scientific Reports, 2019, 9, 15144.	3.3	29
20	Lymphatic Cannulation for Lymph Sampling and Molecular Delivery. Journal of Immunology, 2019, 203, 2339-2350.	0.8	18
21	Characterization of mouse ocular response to a 35-day spaceflight mission: Evidence of blood-retinal barrier disruption and ocular adaptations. Scientific Reports, 2019, 9, 8215.	3.3	30
22	The isolation and characterization of a new snake venom cysteine-rich secretory protein (svCRiSP) from the venom of the Southern Pacific rattlesnake and its effect on vascular permeability. Toxicon, 2019, 165, 22-30.	1.6	19
23	Pinealectomy or light exposure exacerbates biliary damage and liver fibrosis in cholestatic rats through decreased melatonin synthesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1525-1539.	3.8	18
24	Impairment of lymphatic endothelial barrier function by X-ray irradiation. International Journal of Radiation Biology, 2019, 95, 562-570.	1.8	13
25	Prolonged intake of desloratadine: mesenteric lymphatic vessel dysfunction and development of obesity/metabolic syndrome. American Journal of Physiology - Renal Physiology, 2019, 316, G217-G227.	3.4	18
26	A moderately elevated soy protein diet mitigates inflammatory changes in gut and in bone turnover during chronic TNBS-induced inflammatory bowel disease. Applied Physiology, Nutrition and Metabolism, 2019, 44, 595-605.	1.9	12
27	Progressive dysfunction of collecting liver lymphatics during the development of extrahepatic cholestasis. FASEB Journal, 2019, 33, 662.64.	0.5	Ο
28	Burn Injury-Associated MHCII+ Immune Cell Accumulation Around Lymphatic Vessels of the Mesentery and Increased Lymphatic Endothelial Permeability Are Blocked by Doxycycline Treatment. Lymphatic Research and Biology, 2018, 16, 56-64.	1.1	2
29	Differential Mechanism of Action of 3,4',7-O-trimethylquercetin in Three Types of Ovarian Cancer Cells. Anticancer Research, 2018, 38, 5131-5137.	1.1	9
30	Differential Effects of <i>In Vitro</i> Treatment with Cinobufotalin on Three Types of Ovarian Cancer Cells. Anticancer Research, 2018, 38, 5717-5724.	1.1	5
31	IL-1β reduces cardiac lymphatic muscle contraction via COX-2 and PGE2 induction: Potential role in myocarditis. Biomedicine and Pharmacotherapy, 2018, 107, 1591-1600.	5.6	21
32	Borrelia burgdorferi adhere to blood vessels in the dura mater and are associated with increased meningeal T cells during murine disseminated borreliosis. PLoS ONE, 2018, 13, e0196893.	2.5	16
33	Quantitative Profiling of the Lymph Node Clearance Capacity. Scientific Reports, 2018, 8, 11253.	3.3	35
34	Inflammationâ€induced lymphatic architecture and bone turnover changes are ameliorated by irisin treatment in chronic inflammatory bowel disease. FASEB Journal, 2018, 32, 4848-4861.	0.5	52
35	818: A single-chain derivative of the relaxin hormone (b7-33) protects cytotrophoblasts from hyperglycemia-induced preeclampsia phenotype and induces the survival pathway. American Journal of Obstetrics and Gynecology, 2017, 216, S469-S470.	1.3	0
36	Integrated geometric and mechanical analysis of an image-based lymphatic valve. Journal of Biomechanics, 2017, 64, 172-179.	2.1	6

#	Article	IF	CITATIONS
37	Demonstration and Analysis of the Suction Effect for Pumping Lymph from Tissue Beds at Subatmospheric Pressure. Scientific Reports, 2017, 7, 12080.	3.3	41
38	Engineered biomimetic nanovesicles show intrinsic anti-inflammatory properties for the treatment of inflammatory bowel diseases. Nanoscale, 2017, 9, 14581-14591.	5.6	57
39	A Novel Computational Model Predicts Key Regulators of Chemokine Gradient Formation in Lymph Nodes and Site-Specific Roles for CCL19 and ACKR4. Journal of Immunology, 2017, 199, 2291-2304.	0.8	28
40	Inflammatory Bowel Disease in a Rodent Model Alters Osteocyte Protein Levels Controlling Bone Turnover. Journal of Bone and Mineral Research, 2017, 32, 802-813.	2.8	50
41	Temporal Dynamics of the Rat Thoracic Duct Contractility in the Presence of Imposed Flow. Lymphatic Research and Biology, 2017, 15, 324-330.	1.1	2
42	3,4',7-O-trimethylquercetin Inhibits Invasion and Migration of Ovarian Cancer Cells. Anticancer Research, 2017, 37, 2823-2829.	1.1	11
43	Mast cells and histamine are triggering the NF-κB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation. Aging, 2016, 8, 3065-3090.	3.1	31
44	Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters. PLoS ONE, 2016, 11, e0148384.	2.5	38
45	Apoptotic and stress signaling markers are augmented in preeclamptic placenta and umbilical cord. BBA Clinical, 2016, 6, 25-30.	4.1	29
46	Macrophage alterations within the mesenteric lymphatic tissue are associated with impairment of lymphatic pump in metabolic syndrome. Microcirculation, 2016, 23, 558-570.	1.8	33
47	Cinobufotalin impedes Sw.71 cytotrophoblast cell line function via cell cycle arrest and apoptotic signaling. Molecular and Cellular Biochemistry, 2016, 422, 189-196.	3.1	7
48	Microparticle image velocimetry approach to flow measurements in isolated contracting lymphatic vessels. Journal of Biomedical Optics, 2016, 21, 1.	2.6	15
49	Blunted flow-mediated responses and diminished nitric oxide synthase expression in lymphatic thoracic ducts of a rat model of metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H385-H393.	3.2	27
50	Attenuation of hyperglycemia-induced apoptotic signaling and anti-angiogenic milieu in cultured cytotrophoblast cells. Hypertension in Pregnancy, 2016, 35, 159-169.	1.1	9
51	Cinobufotalin as a Novel Agent to Inhibit <i>in Vitro</i> Epithelial Ovarian Cancer Cell Proliferation, Migration and Invasion. Open Journal of Obstetrics and Gynecology, 2016, 06, 343-351.	0.2	2
52	Lymph Transport and Lymphatic System. , 2016, , 547-549.		0
53	Antiâ€MBG antibodies attenuate MBGâ€induced antiâ€proliferative and antiâ€angiogenic milieu in cytotrophoblast cell model. FASEB Journal, 2016, 30, 1211.7.	0.5	0
54	Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H2042-H2057.	3.2	46

#	Article	IF	CITATIONS
55	MicroRNA signature of inflamed lymphatic endothelium and role of miR-9 in lymphangiogenesis and inflammation. American Journal of Physiology - Cell Physiology, 2015, 309, C680-C692.	4.6	53
56	Colonic Insult Impairs Lymph Flow, Increases Cellular Content of the Lymph, Alters Local Lymphatic Microenvironment, and Leads to Sustained Inflammation in the Rat Ileum. Inflammatory Bowel Diseases, 2015, 21, 1553-1563.	1.9	32
57	ILâ€1β reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenaseâ€2 and prostaglandin <scp>E</scp> ₂ . British Journal of Pharmacology, 2015, 172, 4038-4051.	5.4	27
58	Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow. Journal of Biomechanics, 2015, 48, 3584-3590.	2.1	28
59	Modeling Lymph Flow and Fluid Exchange with Blood Vessels in Lymph Nodes. Lymphatic Research and Biology, 2015, 13, 234-247.	1.1	90
60	Suppression of aldosterone and progesterone in preeclampsia. Journal of Maternal-Fetal and Neonatal Medicine, 2015, 28, 1296-1301.	1.5	13
61	Hyperglycemia down-regulates cGMP-dependent protein kinase I expression in first trimester cytotrophoblast cells. Molecular and Cellular Biochemistry, 2015, 405, 81-88.	3.1	3
62	Collecting Lymphatic Vessel Permeability Facilitates Adipose Tissue Inflammation and Distribution of Antigen to Lymph Node–Homing Adipose Tissue Dendritic Cells. Journal of Immunology, 2015, 194, 5200-5210.	0.8	102
63	Agingâ€related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell, 2015, 14, 582-594.	6.7	106
64	Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1122-R1134.	1.8	48
65	Cinobufotalin Inhibits Ovarian Cancer Cells Proliferation, Migration and Invasion. FASEB Journal, 2015, 29, LB121.	0.5	0
66	Hypoxia Modulates the Cellular Signaling in Cultured Rat Lung Microvascular Endothelial Cells. Chest, 2014, 146, 857A.	0.8	0
67	Electrophysiological Properties of Rat Mesenteric Lymphatic Vessels and their Regulation by Stretch. Lymphatic Research and Biology, 2014, 12, 66-75.	1.1	40
68	Lymph Transport in Rat Mesenteric Lymphatics Experiencing Edemagenic Stress. Microcirculation, 2014, 21, 359-367.	1.8	38
69	Hyperglycemia impairs cytotrophoblast function via stress signaling. American Journal of Obstetrics and Gynecology, 2014, 211, 541.e1-541.e8.	1.3	35
70	Tu1737 IL-1β Inhibits Contraction of Intestinal Lymphatic Smooth Muscle -Implications for Chronic Gut Inflammation. Gastroenterology, 2014, 146, S-830.	1.3	0
71	345: Cardiotonic steroids cause monolayer hyperpermeability in lymphatic endothelial cells via nitric oxide dependent pathway. American Journal of Obstetrics and Gynecology, 2014, 210, S178.	1.3	0
72	The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis, 2014, 17, 395-406.	7.2	104

#	Article	IF	CITATIONS
73	Stromal Interaction Molecule 1 (STIM1) and Orai1 Mediate Histamine-evoked Calcium Entry and Nuclear Factor of Activated T-cells (NFAT) Signaling in Human Umbilical Vein Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 29446-29456.	3.4	33
74	PKC activation increases Ca ²⁺ sensitivity of permeabilized lymphatic muscle via myosin light chain 20 phosphorylation-dependent and -independent mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H674-H683.	3.2	26
75	Lymph transport in rat mesenteric lymphatics experiencing edemagenic stress (LB851). FASEB Journal, 2014, 28, LB851.	0.5	0
76	Confocal Image-Based Computational Modeling of Nitric Oxide Transport in a Rat Mesenteric Lymphatic Vessel. Journal of Biomechanical Engineering, 2013, 135, 51005.	1.3	26
77	Cyclic guanosine monophosphate and the dependent protein kinase regulate lymphatic contractility in rat thoracic duct. Journal of Physiology, 2013, 591, 4549-4565.	2.9	40
78	An Immunological Fingerprint Differentiates Muscular Lymphatics from Arteries and Veins. Lymphatic Research and Biology, 2013, 11, 155-171.	1.1	20
79	Maximum shortening velocity of lymphatic muscle approaches that of striated muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1494-H1507.	3.2	22
80	Lymphatic Filariasis: Perspectives on Lymphatic Remodeling and Contractile Dysfunction in Filarial Disease Pathogenesis. Microcirculation, 2013, 20, 349-364.	1.8	58
81	HYPERGLYCEMIA INDUCES AN ANTIâ€ANGIOGENIC MILIEU IN FIRST TRIMESTER CYTOTROPHOBLAST CELL. FASEB Journal, 2013, 27, 835.5.	0.5	0
82	Immune cell mediated regulation of lymphatic contractility during inflammation. FASEB Journal, 2013, 27, 1131.17.	0.5	0
83	Contractile behavior of the uterine lymphatic vessels. FASEB Journal, 2013, 27, 681.7.	0.5	0
84	LPS mediated decreases in immune cells recruitment on or near lymphatics impairs lymphatic contractility. FASEB Journal, 2013, 27, 681.5.	0.5	2
85	Effect of Cardiotonic Steroids on Monolayer Permeability and Junction Proteins in Lymphatic Endothelial Cells. FASEB Journal, 2013, 27, lb709.	0.5	0
86	Independent and interactive effects of preload and afterload on the pump function of the isolated lymphangion. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H809-H824.	3.2	65
87	Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H643-H653.	3.2	78
88	Intrinsic increase in lymphangion muscle contractility in response to elevated afterload. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H795-H808.	3.2	104
89	Regional Heterogeneity of Length–Tension Relationships in Rat Lymph Vessels. Lymphatic Research and Biology, 2012, 10, 14-19.	1.1	28
90	Passive Pressure–Diameter Relationship and Structural Composition of Rat Mesenteric Lymphangions. Lymphatic Research and Biology, 2012, 10, 152-163.	1.1	32

#	Article	IF	CITATIONS
91	783 UPREGULATION OF (PRO)RENIN AND ITS RECEPTOR IN PREECLAMPSIA. Journal of Hypertension, 2012, 30, e226.	0.5	0
92	994 MARINOBUFAGENIN CAUSES CEREBRAL VASCULAR LEAK SYNDROME IN PREECLAMPSIA. Journal of Hypertension, 2012, 30, e288.	0.5	0
93	Pathogenesis of pre-eclampsia: marinobufagenin and angiogenic imbalance as biomarkers of the syndrome. Translational Research, 2012, 160, 99-113.	5.0	27
94	Developing a Model for Mass Transport of Nitric Oxide in the Lymphatic System. , 2012, , .		0
95	217: A bufadienolide suppresses aldosterone availability in preeclampsia: a translational approach with in vivo, in vitro, and patient study. American Journal of Obstetrics and Gynecology, 2012, 206, S108.	1.3	0
96	218: A bufadienolide causes cerebral vascular leak syndrome in preeclampsia: in vivo and in vitro study. American Journal of Obstetrics and Gynecology, 2012, 206, S109.	1.3	0
97	Adenovirus-Mediated Gene Transfection in the Isolated Lymphatic Vessels. Methods in Molecular Biology, 2012, 843, 199-204.	0.9	2
98	CARDIOTONIC STERIODS INDUCE STRESS SIGNALING IN PREECLAMSIA: A TRANSLATIONAL APPROACH WITH IN VIVO, IN VITRO, AND PATIENT STUDIES. FASEB Journal, 2012, 26, 615.2.	0.5	0
99	EXOGENOUS NITRIC OXIDE (NO) MODULATES THE Gâ€PROTEIN COUPLED SIGNALING PROTEINS IN CULTURED LYMPHATIC SMOOTH MUSCLE CELLS. FASEB Journal, 2012, 26, lb668.	0.5	0
100	Ca2+â€related proteins associated with intracellular stores in rat lymphatics. FASEB Journal, 2012, 26, 677.5.	0.5	0
101	Lymphatic valve lock in response to modest gravitational loads: a contributing mechanism to peripheral lymphedema?. FASEB Journal, 2012, 26, 677.2.	0.5	0
102	Increased Lymphatic Permeability During Shock and Burn Trauma Alters Antigen Presenting Cell Recruitment to Mesenteric Lymph Vessels. FASEB Journal, 2012, 26, 677.11.	0.5	0
103	Role of cinobufotalin in the pathogenesis of preeclampsia: in vivo and in vitro studies. FASEB Journal, 2012, 26, lb158.	0.5	0
104	Nitric Oxide Transport in Lymphatic Vessels. , 2011, , .		0
105	Hypoxia and Extracellular Matrix Proteins Influence Angiogenesis and Lymphangiogenesis in Mouse Embryoid Bodies. Frontiers in Physiology, 2011, 2, 103.	2.8	10
106	Substance P Activates Both Contractile and Inflammatory Pathways in Lymphatics Through the Neurokinin Receptors NK1R and NK3R. Microcirculation, 2011, 18, 24-35.	1.8	35
107	Oxidized Low-Density Lipoprotein Inhibits Nitric Oxide-Mediated Coronary Arteriolar Dilation by Up-regulating Endothelial Arginase I. Microcirculation, 2011, 18, 36-45.	1.8	38
108	Differential effects of myosin light chain kinase inhibition on contractility, force development and myosin light chain 20 phosphorylation of rat cervical and thoracic duct lymphatics. Journal of Physiology, 2011, 589, 5415-5429.	2.9	34

#	Article	IF	CITATIONS
109	Measuring contraction propagation and localizing pacemaker cells using high speed video microscopy. Journal of Biomedical Optics, 2011, 16, 1.	2.6	20
110	Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1897-H1906.	3.2	85
111	Determinants of valve gating in collecting lymphatic vessels from rat mesentery. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H48-H60.	3.2	137
112	CINOBUFATALIN IMPAIRS FIRST TRIMESTER CYTOTROPHOBLAST FUNCTIONS VIA CELL CYCLE ARREST AND APOPTOTIC SIGNALING. FASEB Journal, 2011, 25, lb139.	0.5	0
113	Effects of Edemagenic Stress on Lymph Transport in the Rat Mesentery. , 2011, , .		0
114	Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-κB and Prox1. Blood, 2010, 115, 418-429.	1.4	177
115	Lymphatic system: a vital link between metabolic syndrome and inflammation. Annals of the New York Academy of Sciences, 2010, 1207, E94-102.	3.8	59
116	Hydrodynamic regulation of lymphatic transport and the impact of aging. Pathophysiology, 2010, 17, 277-287.	2.2	75
117	Mechanical and contractile characteristics of rat thoracic duct and cervical lymphatics. FASEB Journal, 2010, 24, 972.9.	0.5	0
118	Flowâ€nediated NO production in the endothelium is dependent on eNOS activity and shear FASEB Journal, 2010, 24, 972.3.	0.5	0
119	Substance P activates both inflammatory and contractile signaling pathways in the lymphatics through neurokinin receptors. FASEB Journal, 2010, 24, 777.15.	0.5	0
120	Development of siRNA strategy to knockdown the regulatory contractile proteins in lymphatic muscle. FASEB Journal, 2010, 24, lb678.	0.5	0
121	Inhibition of myosin light chain phosphorylation decreases rat mesenteric lymphatic contractile activity. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H726-H734.	3.2	61
122	Venomotion modulates lymphatic pumping in the bat wing. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H2015-H2021.	3.2	8
123	Methods for Lymphatic Vessel Culture and Gene Transfection. Microcirculation, 2009, 16, 615-628.	1.8	33
124	Contractile Physiology of Lymphatics. Lymphatic Research and Biology, 2009, 7, 87-96.	1.1	275
125	cGMP/PKGâ€mediated regulation of lymphatic contractility. FASEB Journal, 2009, 23, 813.4.	0.5	0
126	CULTURE OF LYMPHATIC VESSELS AND DEVELOPMENT OF TRANSFECTION TECHNIQUES TO TARGET GENES INVOLVED IN REGULATION OF LYMPHATIC CONTRACTILITY. FASEB Journal, 2009, 23, 764.3.	0.5	0

#	Article	IF	CITATIONS
127	Low density lipoprotein modulates rat mesenteric lymphatic pumping. FASEB Journal, 2009, 23, 764.1.	0.5	1
128	<i>Molecular Regulation of Lymphatic Contractility</i> . Annals of the New York Academy of Sciences, 2008, 1131, 89-99.	3.8	109
129	Microlymphatic Biology. , 2008, , 125-158.		6
130	Modulation of lymphatic muscle contractility by the neuropeptide substance P. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H587-H597.	3.2	75
131	Calcium sensitivity and cooperativity of permeabilized rat mesenteric lymphatics. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1524-R1532.	1.8	39
132	Diminished mesenteric vaso- and venoconstriction and elevated plasma ANP and BNP with simulated microgravity. Journal of Applied Physiology, 2008, 104, 1273-1280.	2.5	21
133	Differential Muscle Cell Recruitments and Functions in Mouse Lymphatic Tissue Beds. FASEB Journal, 2008, 22, 392.4.	0.5	0
134	Nitric Oxide Production By Contracting Rat Mesenteric Lymphatic Vessels Is Primarily Within Valvular Regions. FASEB Journal, 2008, 22, 1141.6.	0.5	0
135	Developing Computational Flow Models for the Lymphatic Vasculature. , 2008, , .		0
136	Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1943-H1952.	3.2	68
137	Intrinsic pump-conduit behavior of lymphangions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1510-R1518.	1.8	98
138	Characteristics of the Active Lymph Pump in Bovine Prenodal Mesenteric Lymphatics. Lymphatic Research and Biology, 2007, 5, 71-80.	1.1	14
139	An Automated Method to Control Preload by Compensation for Stress Relaxation in Spontaneously Contracting, Isometric Rat Mesenteric Lymphatics. Microcirculation, 2007, 14, 603-612.	1.8	11
140	Length-Dependence of Lymphatic Phasic Contractile Activity Under Isometric and Isobaric Conditions. Microcirculation, 2007, 14, 613-625.	1.8	39
141	Image Correlation Algorithm for Measuring Lymphocyte Velocity and Diameter Changes in Contracting Microlymphatics. Annals of Biomedical Engineering, 2007, 35, 387-396.	2.5	46
142	Imposed flowâ€dependent inhibition in rat thoracic duct is not dependent from on K channel blockade. FASEB Journal, 2007, 21, A485.	0.5	3
143	RATEâ€6ENSITIVE CONTRACTILE RESPONSES OF RAT MESENTERIC LYMPHATICS TO CIRCUMFERENTIAL STRETCH. FASEB Journal, 2007, 21, A485.	0.5	4
144	Regulation of lymphatic contractility by myosin light chain phosphorylation. FASEB Journal, 2007, 21, A485.	0.5	0

#	Article	IF	CITATIONS
145	PRESSUREâ€VOLUME RELATIONSHIPS OF RAT MESENTERIC LYMPHATIC VESSELS IN RESPONSE TO CONTROLLED PRELOAD AND AFTERLOAD STEPS. FASEB Journal, 2007, 21, A485.	0.5	1
146	Molecular Profile and Proliferative Responses of Rat Lymphatic Endothelial Cells in Culture. Lymphatic Research and Biology, 2006, 4, 119-142.	1.1	22
147	Image correlation method for measuring flow and diameter changes in contracting mesenteric microlymphatics in situ. , 2006, , .		0
148	Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. Journal of Physiology, 2006, 575, 821-832.	2.9	154
149	Lymph Flow, Shear Stress, and Lymphocyte Velocity in Rat Mesenteric Prenodal Lymphatics. Microcirculation, 2006, 13, 597-610.	1.8	224
150	Inhibition of active lymph pump by simulated microgravity in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2295-H2308.	3.2	48
151	Changes in end-to-end interactions of tropomyosin affect mouse cardiac muscle dynamics. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H552-H563.	3.2	8
152	Signaling pathways mediating VEGF 165 â€induced calcium transients and membrane depolarization in human endothelial cells. FASEB Journal, 2006, 20, 991-993.	0.5	33
153	Pulmonary Air Embolization Inhibits Lung Lymph Flow by Increasing Lymphatic Outflow Pressure. Lymphatic Research and Biology, 2006, 4, 18-22.	1.1	7
154	Automated Measurement of Diameter and Contraction Waves of Cannulated Lymphatic Microvessels. Lymphatic Research and Biology, 2006, 4, 3-10.	1.1	32
155	Phasic contractions responsible for an NOâ€dependent relaxation in rat thoracic duct. FASEB Journal, 2006, 20, A280.	0.5	0
156	Inhibition of myosin light chain phosphorylation decreases rat mesenteric lymphatic pump function. FASEB Journal, 2006, 20, A279.	0.5	0
157	Shortening velocities of rat mesenteric lymphatics during spontaneous and agonistâ€induced contractions. FASEB Journal, 2006, 20, A279.	0.5	1
158	Effects of Câ€reactive protein on rat mesenteric lymphatic contractility. FASEB Journal, 2006, 20, .	0.5	1
159	Microlymphatic flow using fast video microscopy. , 2005, , .		1
160	Lymphatic Biology and the Microcirculation: Past, Present and Future. Microcirculation, 2005, 12, 141-150.	1.8	71
161	Microarray Analysis of VEGF-C Responsive Genes in Human Lymphatic Endothelial Cells. Lymphatic Research and Biology, 2005, 3, 183-207.	1.1	18
162	Measuring microlymphatic flow using fast video microscopy. Journal of Biomedical Optics, 2005, 10, 064016.	2.6	64

#	Article	IF	CITATIONS
163	Lymph Transport and Lymphatic System. , 2005, , 398-401.		1
164	Effects of Substance P on Mesenteric Lymphatic Contractility in the Rat. Lymphatic Research and Biology, 2004, 2, 2-10.	1.1	38
165	Roles of phosphorylation of myosin binding protein-C and troponin I in mouse cardiac muscle twitch dynamics. Journal of Physiology, 2004, 558, 927-941.	2.9	76
166	Charged residue alterations in the inner-core domain and carboxy-terminus of α-tropomyosin differentially affect mouse cardiac muscle contractility. Journal of Physiology, 2004, 561, 777-791.	2.9	9
167	Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium, 2004, 36, 61-75.	2.4	43
168	Regional Variations of Contractile Activity in Isolated Rat Lymphatics. Microcirculation, 2004, 11, 477-492.	1.8	170
169	Lymphatic smooth muscle: the motor unit of lymph drainage. International Journal of Biochemistry and Cell Biology, 2004, 36, 1147-1153.	2.8	163
170	Relationship between cardiac protein tyrosine phosphorylation and myofibrillogenesis during axolotl heart development. Tissue and Cell, 2003, 35, 133-142.	2.2	6
171	Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB Journal, 2003, 17, 1-25.	0.5	147
172	Development and Characterization of Endothelial Cells from Rat Microlymphatics. Lymphatic Research and Biology, 2003, 1, 101-119.	1.1	32
173	Lymphatic Muscle: A Review of Contractile Function. Lymphatic Research and Biology, 2003, 1, 147-158.	1.1	68
174	Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. Journal of Physiology, 2002, 540, 1023-1037.	2.9	241
175	Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. Journal of Physiology, 2002, 540, 1023-1037.	2.9	3
176	Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. Journal of Physiology, 2002, 540, 1023-1037.	2.9	12
177	Protein Transfection of Intact Microvessels Specifically Modulates Vasoreactivity and Permeability. Journal of Vascular Research, 2001, 38, 444-452.	1.4	23
178	Role of phospholipase C, protein kinase C, and calcium in VEGF-induced venular hyperpermeability. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H535-H542.	3.2	100
179	Lymphatic Microcirculation. Microcirculation, 1996, 3, 241-243.	1.8	23
180	Effect of the non-peptide blocker CP 96,345 on the cellular mechanism involved in the response to NK1 receptor stimulation in human skin fibroblasts. Neuropeptides, 1996, 30, 345-354.	2.2	8

#	Article	IF	CITATIONS
181	Multiple Ionic Mechanisms Activated by Bradykinin in Coronary Venular Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 1996, 4, 29-40.	1.7	2
182	Thermal effects of MR imaging: worst-case studies on sheep American Journal of Roentgenology, 1990, 155, 1105-1110.	2.2	34
183	Physiology and pathobiology of the microcirculation. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 1988, 9, 264-277.	1.3	12
184	Construction of an optical bench microscope for intravital studies. Microvascular Research, 1987, 33, 433-436.	2.5	1
185	Analysis of picogram quantities of protein in subnanoliter-size samples. Analytical Biochemistry, 1984, 142, 182-188.	2.4	8