Sooboo Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/366138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Cu additives on the performance of a cobalt substituted ceria (Ce 0.90 Co 0.10 O 2–δ) catalyst in total and preferential CO oxidation. Applied Catalysis B: Environmental, 2016, 182, 1-14.	20.2	57
2	Hydrogenolysis of Glycerol to Monoalcohols over Supported Mo and W Catalysts. ACS Sustainable Chemistry and Engineering, 2016, 4, 5752-5760.	6.7	46
3	Oxidative dehydrogenation of n-octane using vanadium pentoxide-supported hydroxyapatite catalysts. Applied Catalysis A: General, 2012, 421-422, 58-69.	4.3	42
4	Synthesis and Characterization of Layered Double Hydroxides and Their Potential as Nonviral Gene Delivery Vehicles. ChemistryOpen, 2015, 4, 137-145.	1.9	38
5	Activation of n-octane using vanadium oxide supported on alkaline earth hydroxyapatites. Applied Catalysis A: General, 2013, 456, 105-117.	4.3	37
6	Effect of the TiO ₂ Anatase/Rutile Ratio and Interface for the Oxidative Activation of <i>n</i> -Octane. ACS Catalysis, 2020, 10, 2211-2220.	11.2	36
7	The preferential oxidation of CO in hydrogen rich streams over platinum doped nickel oxide catalysts. Applied Catalysis B: Environmental, 2016, 180, 687-697.	20.2	35
8	Efficient Solvent Free Knoevenagel Condensation Over Vanadium Containing Heteropolyacid Catalysts. Catalysis Letters, 2016, 146, 364-372.	2.6	31
9	Studies towards a mechanistic insight into the activation of n-octane using vanadium supported on alkaline earth metal hydroxyapatites. Applied Catalysis A: General, 2013, 467, 142-153.	4.3	28
10	The Role of Copper Exchanged Phosphomolybdic Acid Catalyst for Knoevenagel Condensation. Catalysis Letters, 2016, 146, 1470-1477.	2.6	26
11	TiO2 and ZrO2 supported Ru catalysts for CO mitigation following the water-gas shift reaction. International Journal of Hydrogen Energy, 2018, 43, 22291-22302.	7.1	26
12	Preferential oxidation of CO in a hydrogen rich feed stream using Co–Fe mixed metal oxide catalysts prepared from hydrotalcite precursors. Journal of Molecular Catalysis A, 2015, 404-405, 167-177.	4.8	24
13	Solvent-Free Knoevenagel Condensation over Cobalt Hydroxyapatite. Synthetic Communications, 2010, 40, 3710-3715.	2.1	21
14	Engineering of catalytic sites of Pdx-Ce1-xO2-δ for dehydrogenation, oxygen insertion and reverse water gas shift reactions during methane combustion. Applied Catalysis B: Environmental, 2020, 275, 119118.	20.2	21
15	Tuning surface composition of Cs exchanged phosphomolybdic acid catalysts in C H bond activation of toluene to benzaldehyde at room temperature. Journal of Molecular Catalysis A, 2016, 425, 116-123.	4.8	20
16	Selective Oxidation of n-Pentane Over V2O5 Supported on Hydroxyapatite. Catalysis Letters, 2008, 126, 200-206.	2.6	19
17	Vanadium oxide supported on non-stoichiometric strontium hydroxyapatite catalysts for the oxidative dehydrogenation of n-octane. Journal of Molecular Catalysis A, 2014, 395, 398-408.	4.8	19
18	Comparative studies for CO oxidation and hydrogenation over supported Pt catalysts prepared by different synthesis methods. Renewable Energy, 2020, 148, 1041-1053.	8.9	18

SOOBOO SINGH

#	Article	IF	CITATIONS
19	Histidine-Tagged Folate-Targeted Gold Nanoparticles for Enhanced Transgene Expression in Breast Cancer Cells In Vitro. Pharmaceutics, 2022, 14, 53.	4.5	18
20	Simultaneous removal of 2,4,6-tribromophenol from water and bromate ion minimization by ozonation. Journal of Hazardous Materials, 2018, 357, 415-423.	12.4	17
21	CO oxidation activity enhancement of Ce _{0.95} Cu _{0.05} O _{2â^î} induced by Pd co-substitution. Catalysis Science and Technology, 2016, 6, 8104-8116.	4.1	16
22	An investigation of iron modified hydroxyapatites used in the activation of n-octane. Molecular Catalysis, 2017, 438, 256-266.	2.0	13
23	Solvent-free Knoevenagel condensation over iridium and platinum hydroxyapatites. Kinetics and Catalysis, 2011, 52, 536-539.	1.0	12
24	The effect of varying the metal ratio in a chromium molybdate catalysts for the oxidative dehydrogenation of n-octane. Molecular Catalysis, 2018, 460, 74-82.	2.0	12
25	Preferential CO oxidation in a hydrogen-rich stream overÂgoldÂsupported on Ni–Fe mixed metal oxides for fuel cell applications. International Journal of Hydrogen Energy, 2016, 41, 2144-2153.	7.1	11
26	Remediation of CO by oxidation over Au nanoparticles supported on mixed metal oxides. Journal of Environmental Chemical Engineering, 2019, 7, 102827.	6.7	11
27	An investigation of Cu–Re–ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions. Sustainable Energy and Fuels, 2017, 1, 1437-1445.	4.9	10
28	The Role of Alkali Metal Exchanged Phosphomolybdic Acid Catalysts in the Solvent Free Oxidation of Styrene to Benzaldehyde at Room Temperature. Catalysis Letters, 2018, 148, 1355-1365.	2.6	9
29	The effect of rhenium on the conversion of glycerol to mono-alcohols over nickel catalysts under continuous flow conditions. Sustainable Energy and Fuels, 2019, 3, 2038-2047.	4.9	9
30	Effect of different weight loadings of MoO x /SBA-15 on the oxidative dehydrogenation of n-octane. Journal of Porous Materials, 2015, 22, 787-796.	2.6	8
31	Effect of the Support on the Oxidation of Heptane Using Vanadium Supported on Alkaline Earth Metal Hydroxyapatites. Catalysis Letters, 2015, 145, 668-678.	2.6	7
32	Fe phase complexes and their thermal stability in iron phosphate catalysts supported on silica. Hyperfine Interactions, 2015, 231, 137-142.	0.5	7
33	The influence of Montmorillonite K10 as a support in the nickel catalyzed hydrogenation of octanal. Journal of Porous Materials, 2016, 23, 175-183.	2.6	7
34	Efficient and expeditious chemoselective BOC protection of amines in catalyst and solvent-free media. Research on Chemical Intermediates, 2017, 43, 1355-1363.	2.7	7
35	Debromination of 2,4,6-Tribromophenol and bromate ion minimization in Water by catalytic ozonation. Journal of Water Process Engineering, 2019, 31, 100893.	5.6	7
36	Selected metal oxides for C H bond activation of n-octane and propensity for CO formation: An empirical study. Molecular Catalysis, 2019, 464, 1-9.	2.0	7

SOOBOO SINGH

#	Article	IF	CITATIONS
37	Ternary (Cu, Ni and Co) Nanocatalysts for Hydrogenation of Octanal to Octanol: An Insight into the Cooperative Effect. Catalysis Letters, 2017, 147, 525-538.	2.6	6
38	Synergistic role of BrÃ,nsted and Lewis acidity in alkali metal-exchanged heteropolyacid catalysts for esterification of acetic acid at room temperature. Journal of the Iranian Chemical Society, 2018, 15, 1411-1418.	2.2	6
39	Non-catalytic and catalytic ozonation of simple halohydrins in water. Journal of Environmental Chemical Engineering, 2019, 7, 102783.	6.7	6
40	Phase transformation of iron in hydroxyapatite in the activation of n-octane. Hyperfine Interactions, 2015, 231, 131-136.	0.5	5
41	Amino Acid Functionalized Hydrotalcites for Gene Silencing. Journal of Nanoscience and Nanotechnology, 2020, 20, 3387-3397.	0.9	5
42	A kinetic insight into the activation of n-octane with alkaline-earth metal hydroxyapatites. South African Journal of Chemistry, 2015, 68, 195-200.	0.6	5
43	Activation of n-Heptane: A Study with VMgO Catalysts. Catalysis Letters, 2014, 144, 590-597.	2.6	4
44	The Role of Bronsted and Lewis Acidity in the Green Synthesis of Homopropargyl Alcohols over HZSM-5. South African Journal of Chemistry, 2018, 71, 62-67.	0.6	4
45	The oxidative aromatization of n-hexane over VMgO catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 307-321.	1.7	3
46	Influence of preparation method of high surface area MnOx/SBA-15 catalysts for the activation of n-octane. Journal of Porous Materials, 2019, 26, 301-309.	2.6	3
47	Non oxidative and oxidative dehydrogenation of <i>n</i> -octane using FePO ₄ : effect of different FePO ₄ phases on the product selectivity. Catalysis Science and Technology, 2020, 10, 7591-7600.	4.1	3
48	Removal of 2,4-Dichlorophenoxyacetic acid from water and organic by-product minimization by catalytic ozonation. Journal of Environmental Health Science & Engineering, 2019, 17, 85-95.	3.0	2
49	Partial oxidation of n-pentane over vanadium phosphorus oxide supported on hydroxyapatites. South African Journal of Chemistry, 2016, 69, .	0.6	2
50	Solvent free transformation of benzyl alcohol to benzaldehyde over copper and zinc modified phosphomolybdic acid catalysts at room temperature. South African Journal of Science and Technology, 2021, 40, 31-36.	0.1	1
51	Title is missing!. Journal of Solution Chemistry, 2003, 32, 435-450.	1.2	0
52	The Mitigation of CO Present in the Water–Gas Shift Reformate Gas over IR-TiO2 and IR-ZrO2 Catalysts. Catalysts, 2021, 11, 1378.	3.5	0