
Xinnan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3660121/publications.pdf Version: 2024-02-01

XINNAN WANC

#	Article	IF	CITATIONS
1	Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nature Metabolism, 2022, 4, 802-812.	11.9	40
2	Metaxins are core components of mitochondrial transport adaptor complexes. Nature Communications, 2021, 12, 83.	12.8	48
3	Miro1 Impairment in a Parkinson's At-Risk Cohort. Frontiers in Molecular Neuroscience, 2021, 14, 734273.	2.9	9
4	A mitochondrial membrane-bridging machinery mediates signal transduction of intramitochondrial oxidation. Nature Metabolism, 2021, 3, 1242-1258.	11.9	28
5	Mitochondrial Defects in Fibroblasts of Pathogenic MAPT Patients. Frontiers in Cell and Developmental Biology, 2021, 9, 765408.	3.7	1
6	Drosophila PTPMT1 Has a Function in Tracheal Air Filling. IScience, 2020, 23, 101285.	4.1	3
7	Precision Neurology for Parkinson's Disease: Coupling <scp>Miro1â€Based</scp> Diagnosis With Drug Discovery. Movement Disorders, 2020, 35, 1502-1508.	3.9	9
8	Drosophila VCP/p97 Mediates Dynein-Dependent Retrograde Mitochondrial Motility in Axons. Frontiers in Cell and Developmental Biology, 2020, 8, 256.	3.7	8
9	Miro1 Marks Parkinson's Disease Subset and Miro1 Reducer Rescues Neuron Loss in Parkinson's Models. Cell Metabolism, 2019, 30, 1131-1140.e7.	16.2	96
10	Surveillance and transportation of mitochondria in neurons. Current Opinion in Neurobiology, 2019, 57, 87-93.	4.2	29
11	PINK1 Phosphorylates MIC60/Mitofilin to Control Structural Plasticity of Mitochondrial Crista Junctions. Molecular Cell, 2018, 69, 744-756.e6.	9.7	88
12	Phosphorylation of MCAD selectively rescues <i>PINK1</i> deficiencies in behavior and metabolism. Molecular Biology of the Cell, 2018, 29, 1219-1227.	2.1	12
13	Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson's models. Acta Neuropathologica, 2018, 136, 607-620.	7.7	111
14	Destructive cellular paths underlying familial and sporadic Parkinson disease converge on mitophagy. Autophagy, 2017, 13, 1998-1999.	9.1	16
15	Live Imaging Mitochondrial Transport in Neurons. Neuromethods, 2017, 123, 49-66.	0.3	7
16	<i>Drosophila</i> MIC60/mitofilin conducts dual roles in mitochondrial motility and crista structure. Molecular Biology of the Cell, 2017, 28, 3471-3479.	2.1	29
17	Transporting mitochondria in neurons. F1000Research, 2016, 5, 1735.	1.6	35
18	Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease. Cell Stem Cell, 2016, 19, 709-724.	11.1	371

XINNAN WANG

#	Article	IF	CITATIONS
19	Elevated Energy Production in Chronic Fatigue Syndrome Patients. Journal of Nature and Science, 2016, 2, .	1.1	15
20	Glucose Regulates Mitochondrial Motility via Milton Modification by O-GlcNAc Transferase. Cell, 2014, 158, 54-68.	28.9	223
21	PINK1-mediated Phosphorylation of Miro Inhibits Synaptic Growth and Protects Dopaminergic Neurons in Drosophila. Scientific Reports, 2014, 4, 6962.	3.3	40
22	The meaning of mitochondrial movement to a neuron's life. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 184-194.	4.1	55
23	New Approaches for Studying Synaptic Development, Function, and Plasticity Using <i>Drosophila</i> as a Model System. Journal of Neuroscience, 2013, 33, 17560-17568.	3.6	28
24	PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility. Cell, 2011, 147, 893-906.	28.9	997
25	The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Human Molecular Genetics, 2009, 18, 3805-3821.	2.9	132
26	Chapter 18 Imaging Axonal Transport of Mitochondria. Methods in Enzymology, 2009, 457, 319-333.	1.0	57
27	The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility. Cell, 2009, 136, 163-174.	28.9	743
28	Axonal transport and the delivery of pre-synaptic components. Current Opinion in Neurobiology, 2008, 18, 495-503.	4.2	146
29	Hereditary spastic paraplegia genes in Drosophila: dissecting their roles in axonal degeneration and intracellular traffic. SEB Experimental Biology Series, 2008, 60, 161-82.	0.1	2
30	Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nature Neuroscience, 2007, 10, 177-185.	14.8	168

3