
James G Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3660096/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mouse model and human patient data reveal critical roles for Pten and p53 in suppressing POLE mutant tumor development. NAR Cancer, 2022, 4, zcac004.	3.1	5
2	Cancers from Novel <i>Pole</i> -Mutant Mouse Models Provide Insights into Polymerase-Mediated Hypermutagenesis and Immune Checkpoint Blockade. Cancer Research, 2020, 80, 5606-5618.	0.9	14
3	BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death and Differentiation, 2020, 27, 3097-3116.	11.2	70
4	TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends in Cancer, 2020, 6, 98-110.	7.4	81
5	Engulfment and cannibalism drive persistence of chemotherapy-treated tumor cells: can they be targeted?. Molecular and Cellular Oncology, 2020, 7, 1688601.	0.7	2
6	Medical students' ability to diagnose common dermatologic conditions in skin of color. Journal of the American Academy of Dermatology, 2020, 83, 957-958.	1.2	53
7	Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. Journal of Cell Biology, 2019, 218, 3827-3844.	5.2	80
8	Analysis across multiple tumor types provides no evidence that mutant p53 exerts dominant negative activity. Npj Precision Oncology, 2019, 3, 1.	5.4	73
9	Breast cancer survival predicted by TP53 mutation status differs markedly depending on treatment. Breast Cancer Research, 2018, 20, 115.	5.0	63
10	p53 Mediates Vast Gene Expression Changes That Contribute to Poor Chemotherapeutic Response in a Mouse Model of Breast Cancer. Translational Oncology, 2018, 11, 930-940.	3.7	13
11	The Regulation of Cellular Functions by the p53 Protein: Cellular Senescence. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026112.	6.2	42
12	TNBC invasion: downstream of STAT3. Oncotarget, 2017, 8, 20517-20518.	1.8	5
13	SASP: Tumor Suppressor or Promoter? Yes!. Trends in Cancer, 2016, 2, 676-687.	7.4	153
14	Pla2g16 phospholipase mediates gain-of-function activities of mutant p53. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11145-11150.	7.1	77
15	Therapeutic Efficacy of <i>p53</i> Restoration in <i>Mdm2</i> -Overexpressing Tumors. Molecular Cancer Research, 2014, 12, 901-911.	3.4	27
16	The mutant p53 mouse as a pre-clinical model. Oncogene, 2013, 32, 4325-4330.	5.9	48
17	The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes and Development, 2013, 27, 1857-1867.	5.9	62
18	Che-ating death: CHE1/AATF protects from p53-mediated apoptosis. EMBO Journal, 2012, 31, 3951-3953.	7.8	3

JAMES G JACKSON

#	Article	IF	CITATIONS
19	p53-Mediated Senescence Impairs the Apoptotic Response to Chemotherapy and Clinical Outcome in Breast Cancer. Cancer Cell, 2012, 21, 793-806.	16.8	279
20	Regulation of tissue―and stimulusâ€specific cell fate decisions by <i>p53 in vivo</i> . Journal of Pathology, 2011, 223, 127-137.	4.5	49
21	Multiple Stress Signals Activate Mutant p53 <i>In Vivo</i> . Cancer Research, 2011, 71, 7168-7175.	0.9	104
22	Mutant p53 Disrupts Role of ShcA Protein in Balancing Smad Protein-dependent and -independent Signaling Activity of Transforming Growth Factor-β (TGF-β)*. Journal of Biological Chemistry, 2011, 286, 44023-44034.	3.4	10
23	Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. Journal of Clinical Investigation, 2011, 121, 893-904.	8.2	113
24	Abstract 1235: Induction of a p21 mediated senescence program by p53 impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. , 2011, , .		0
25	A High-Frequency Regulatory Polymorphism in the p53 Pathway Accelerates Tumor Development. Cancer Cell, 2010, 18, 220-230.	16.8	108
26	Mdm2 Is Required for Survival of Hematopoietic Stem Cells/Progenitors via Dampening of ROS-Induced p53 Activity. Cell Stem Cell, 2010, 7, 606-617.	11.1	126
27	p53 Is Preferentially Recruited to the Promoters of Growth Arrest Genes <i>p21</i> and <i>GADD45</i> during Replicative Senescence of Normal Human Fibroblasts. Cancer Research, 2006, 66, 8356-8360.	0.9	137
28	Primary and Compensatory Roles for RB Family Members at Cell Cycle Gene Promoters That Are Deacetylated and Downregulated in Doxorubicin-Induced Senescence of Breast Cancer Cells. Molecular and Cellular Biology, 2006, 26, 2501-2510.	2.3	95
29	MRG15 Regulates Embryonic Development and Cell Proliferation. Molecular and Cellular Biology, 2005, 25, 2924-2937.	2.3	67
30	Blockade of Epidermal Growth Factor- or Heregulin-Dependent ErbB2 Activation with the Anti-ErbB2 Monoclonal Antibody 2C4 Has Divergent Downstream Signaling and Growth Effects. Cancer Research, 2004, 64, 2601-2609.	0.9	99
31	Regulation of breast cancer cell motility by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell lines. Oncogene, 2001, 20, 7318-7325.	5.9	118
32	Phosphorylation and nuclear exclusion of the forkhead transcription factor FKHR after epidermal growth factor treatment in human breast cancer cells. Oncogene, 2000, 19, 4574-4581.	5.9	83
33	FKHR Binds the Insulin Response Element in the Insulin-Like Growth Factor Binding Protein-1 Promoter*. Endocrinology, 1999, 140, 3140-3146.	2.8	145
34	Enhancement of Insulin-Like Growth Factor Signaling in Human Breast Cancer: Estrogen Regulation of Insulin Receptor Substrate-1 Expression in Vitro and in Vivo. Molecular Endocrinology, 1999, 13, 787-796.	3.7	292
35	IRS-1 expression and activation are not sufficient to activate downstream pathways and enable IGF-I growth response in estrogen receptor negative breast cancer cells. Growth Hormone and IGF Research, 1999, 9, 280-289.	1.1	18
36	FKHR Binds the Insulin Response Element in the Insulin-Like Growth Factor Binding Protein-1 Promoter. Endocrinology, 1999, 140, 3140-3146.	2.8	59

JAMES G JACKSON

#	Article	IF	CITATIONS
37	Insulin Receptor Substrate-1 is the Predominant Signaling Molecule Activated by Insulin-like Growth Factor-I, Insulin, and Interleukin-4 in Estrogen Receptor-positive Human Breast Cancer Cells. Journal of Biological Chemistry, 1998, 273, 9994-10003.	3.4	147
38	Detection of insulin-like growth factor binding proteins (IGFBPs) by ligand blotting in breast cancer tissues. Cancer Letters, 1994, 77, 25-32.	7.2	37
39	Expression of insulin-like growth factor binding proteins in human breast cancer correlates with estrogen receptor status. Journal of Cellular Biochemistry, 1993, 52, 196-205.	2.6	90
40	Recombinant insulin-like growth factor binding protein-1 inhibits IGF-I, serum, and estrogen-dependent growth of MCF-7 human breast cancer cells. Journal of Cellular Physiology, 1993, 157, 229-236.	4.1	75
41	Regulation of insulin-like growth factor binding proteins in ovarian cancer cells by oestrogen. European Journal of Cancer, 1993, 29, 2015-2019.	2.8	31
42	Regulation of Insulin-Like Growth Factor-Binding Protein (IGFBP) Expression by Breast Cancer Cells: Use of IGFBP-1 as as Inhibitor of Insulin-like Growth Factor Action. Journal of the National Cancer Institute, 1992, 84, 1336-1341.	6.3	104