Oscar Vicente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/36597/publications.pdf

Version: 2024-02-01

76294 98753 5,398 165 40 67 citations h-index g-index papers 177 177 177 4701 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Growth and antioxidant responses triggered by water stress in wild relatives of eggplant. Scientia Horticulturae, 2022, 293, 110685.	1.7	17
2	Physiological and Biochemical Responses to Water Stress and Salinity of the Invasive Moth Plant, Araujia sericifera Brot., during Seed Germination and Vegetative Growth. Agronomy, 2022, 12, 361.	1.3	6
3	Biological Traits and Genetic Relationships Amongst Cultivars of Three Species of Tagetes (Asteraceae). Plants, 2022, 11, 760.	1.6	6
4	Essential Oils of Three Aromatic Plant Species as Natural Herbicides for Environmentally Friendly Agriculture. Sustainability, 2022, 14, 3596.	1.6	6
5	Effect of acetylsalicylic acid and ammonium sulphate on productive and physiological parameters in Stipa caudata under water shortage conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12645.	0.5	O
6	Recovery from Salinity and Drought Stress in the Perennial Sarcocornia fruticosa vs. the Annual Salicornia europaea and S. veneta. Plants, 2022, 11, 1058.	1.6	14
7	Constitutive and Adaptive Traits of Environmental Stress Tolerance in the Threatened Halophyte Limonium angustebracteatum Erben (Plumbaginaceae). Plants, 2022, 11, 1137.	1.6	3
8	Effects of Four-Week Exposure to Salt Treatments on Germination and Growth of Two Amaranthus Species. Soil Systems, 2022, 6, 57.	1.0	6
9	Adaptive responses to drought of two Retama raetam subspecies from Tunisia. Journal of Plant Ecology, 2021, 14, 527-540.	1.2	1
10	A brief overview of global biotechnology. Biotechnology and Biotechnological Equipment, 2021, 35, S5-S14.	0.5	14
11	Constitutive and Induced Salt Tolerance Mechanisms and Potential Uses of Limonium Mill. Species. Agronomy, 2021, 11, 413.	1.3	21
12	Agronomic Assessment of a Controlled-Release Polymer-Coated Urea-Based Fertilizer in Maize. Plants, 2021, 10, 594.	1.6	7
13	Modern Biotechnologies: Innovative and Sustainable Approaches for the Improvement of Sugarcane Tolerance to Environmental Stresses. Agronomy, 2021, 11, 1042.	1.3	36
14	Histology of maize seeds and young germinating embryos after liquid nitrogen exposure. Romanian Biotechnological Letters, 2021, 26, 2855-2861.	0.5	0
15	Effect of the Pesticide Endosulfan and Two Different Biostimulants on the Stress Responses of Phaseolus leptostachyus Plants Grown in a Saline Soil. Agronomy, 2021, 11, 1208.	1.3	3
16	Moderate and severe water stress effects on morphological and biochemical traits in a set of pepino (Solanum muricatum) cultivars. Scientia Horticulturae, 2021, 284, 110143.	1.7	5
17	Multidisciplinary studies supporting conservation programmes of two rare, endangered Limonium species from Spain. Plant and Soil, 2021, 466, 505-524.	1.8	2
18	Responses to Salinity in Four Plantago Species from Tunisia. Plants, 2021, 10, 1392.	1.6	13

#	Article	IF	Citations
19	Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. Plants, 2021, 10, 1795.	1.6	33
20	Comparative studies on the stress responses of two Bupleurum (Apiaceae) species in support of conservation programmes. Environmental and Experimental Botany, 2021, 191, 104616.	2.0	4
21	Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change. Plants, 2020, 9, 1251.	1.6	5
22	Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms. Plants, 2020, 9, 1660.	1.6	16
23	Role of active transport of potassium to leaves in the mechanisms of tolerance to salinity in common bean (Phaseolus vulgaris L.). Notulae Scientia Biologicae, 2020, 12, 447-459.	0.1	1
24	Enhanced Agronomic Efficiency Using a New Controlled-Released, Polymeric-Coated Nitrogen Fertilizer in Rice. Plants, 2020, 9, 1183.	1.6	32
25	Comparative Studies on the Physiological and Biochemical Responses to Salt Stress of Eggplant (Solanum melongena) and Its Rootstock S. torvum. Agriculture (Switzerland), 2020, 10, 328.	1.4	18
26	Assessing the effects of in vitro imposed water stress on pineapple growth in relation to biochemical stress indicators using polynomial regression analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 162-170.	0.5	4
27	Effects of Drought and Salinity on Two Commercial Varieties of Lavandula angustifolia Mill. Plants, 2020, 9, 637.	1.6	10
28	Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 2020, 10, 651.	1.3	27
29	Genetic Relationships and Reproductive Traits of Romanian Populations of Silver Fir (Abies alba): Implications for the Sustainable Management of Local Populations. Sustainability, 2020, 12, 4199.	1.6	4
30	Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses. Plant and Soil, 2020, 449, 267-284.	1.8	16
31	The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus) Tj ETQq1 1 0	.784314 1.3	rgBT/Overlac
32	New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy, 2020, 10, 438.	1.3	45
33	Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings. Forests, 2020, 11, 395.	0.9	11
34	Antioxidant responses to drought and salinity in Lavandula angustifolia Mill Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 1980-1992.	0.5	4
35	Growth of pineapple plantlets during acclimatisation can be monitored through automated image analysis of the canopy. The EuroBiotech Journal, 2020, 4, 223-229.	0.5	1
36	Creating Products and Services in Plant Biotechnology. , 2019, , 19-52.		2

#	Article	IF	CITATIONS
37	Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. Forests, 2019, 10, 511.	0.9	4
38	Morphological and Agronomic Characterization of Spanish Landraces of Phaseolus vulgaris L Agriculture (Switzerland), 2019, 9, 149.	1.4	14
39	Developing innovative tools to support educational programmes in Biotechnology and Entrepreneurship. Journal of Biotechnology, 2019, 305, S8-S9.	1.9	0
40	Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiology and Biochemistry, 2019, 143, 72-82.	2.8	41
41	Identification of Salt and Drought Biochemical Stress Markers in Several Silene vulgaris Populations. Sustainability, 2019, 11, 800.	1.6	19
42	Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, 1063-1072.	0.5	5
43	Qualitative and Quantitative Differences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species. Plants, 2019, 8, 506.	1.6	17
44	Insights on Salt Tolerance of Two Endemic Limonium Species from Spain. Metabolites, 2019, 9, 294.	1.3	19
45	Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species. Scientia Horticulturae, 2019, 243, 235-242.	1.7	24
46	European Biotech Entrepreneur Profile: Case Studies. , 2019, , 251-258.		2
47	Auxins, auxin transport inhibitors, and competitors for auxin receptors do not show statistically significan t differences in 212 molecular descriptors. Romanian Biotechnological Letters, 2019, 24, 407-411.	0.5	0
48	HPLC-DAD-ESI+-MS phytochemical profiles of several Rosmarinus Officinalis accessions from spain as influenced by different environmental stress conditions. Studia Universitatis Babes-Bolyai Chemia, 2019, 64, 163-180.	0.1	1
49	Exposure of pineapple shoot tips to liquid nitrogen and cryostorage do not affect the histological status of regenerated plantlets. Romanian Biotechnological Letters, 2019, 24, 1061-1066.	0.5	1
50	Highly informative SSR genotyping reveals large genetic diversity and limited differentiation in European larch (Larixdecidua) populations from Romania. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2018, 42, 165-175.	0.8	16
51	Biochemical Markers of Salt Stress in European Larch (Larix decidua). Notulae Scientia Biologicae, 2018, 10, 430-438.	0.1	4
52	Screening for Salt Tolerance in Four Local Varieties of Phaseolus lunatus from Spain. Agriculture (Switzerland), 2018, 8, 201.	1.4	11
53	Effects of Drought and Salinity on European Larch (Larix decidua Mill.) Seedlings. Forests, 2018, 9, 320.	0.9	17
54	Variable Levels of Tolerance to Water Stress (Drought) and Associated Biochemical Markers in Tunisian Barley Landraces. Molecules, 2018, 23, 613.	1.7	25

#	Article	IF	CITATIONS
55	Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 2018, 117, 193-206.	1.2	20
56	The genus <i>Portulaca</i> as a suitable model to study the mechanisms of plant tolerance to drought and salinity. The EuroBiotech Journal, 2018, 2, 104-113.	0.5	11
57	Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees - Structure and Function, 2017, 31, 1479-1490.	0.9	18
58	Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 2017, 9, plx009.	1.2	78
59	Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Frontiers in Plant Science, 2017, 8, 1438.	1.7	65
60	Flavonoids: Antioxidant Compounds for Plant Defence and for a Healthy Human Diet. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 46, 14-21.	0.5	44
61	Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE, 2017, 12, e0185017.	1.1	103
62	A Methodological Approach for Testing the Viability of Seeds Stored in Short-Term Seed Banks. Notulae Scientia Biologicae, 2017, 9, 563-570.	0.1	15
63	Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivars. The EuroBiotech Journal, 2017, 1, 247-252.	0.5	14
64	Cloning, Sequence Analysis and Expression Patterns during Seed Germination of a Rapeseed (Brassica) Tj ETQqC 435-444.	0 0 0 rgBT 0.5	Overlock 10 ¹
65	Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 2016, 17, 1582.	1.8	44
66	Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2016, 73, 249.	0.2	0
67	Drought responses in six hazelnut (Corylus avellana L.) cultivars. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2016, 73, 259.	0.2	O
68	Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 2016, 7, 473.	1.7	45
69	Plant â€~molecular pharming'. Journal of Biotechnology, 2016, 231, S6-S7.	1.9	О
70	Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Functional Plant Biology, 2016, 43, 949.	1.1	34
71	Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosystems, 2016, 150, 904-915.	0.8	33
72	Contribution of Osmolyte Accumulation to Abiotic Stress Tolerance in Wild Plants Adapted to Different Stressful Environments. , 2016, , 13-25.		14

#	Article	IF	CITATIONS
73	Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	68
74	Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLoS ONE, 2016, 11, e0160236.	1.1	60
75	Screening for drought tolerance in cultivars of the ornamental genus <i>Tagetes</i> (Asteraceae). Peerl, 2016, 4, e2133.	0.9	34
76	Responses to Drought and Salinity in the Endangered Species Ligularia sibirica (L.) Cass Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2016, 73, 252.	0.2	0
77	Identification of Discriminant Factors after Exposure of Maize and Common Bean Plantlets to Abiotic Stresses. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 589-598.	0.5	6
78	Comparative Analysis of the Antioxidant Response to Salt Stress in Inula crithmoides and Dittrichia viscosa. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2015, 72, .	0.2	0
79	Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 1-11.	0.5	95
80	Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst PLoS ONE, 2015, 10, e0135419.	1.1	27
81	Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 2015, 6, 978.	1.7	263
82	Anatomical Modifications in two <i style="mso-bidi-font-style:normal">Juncus</i> Species under Salt Stress Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 501-506.	0.5	6
83	Expression of the Vacuolar Na+/H+ Antiporter Gene (NHX1) in Three Plantago Species Differing in Salt Tolerance. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2015, 72, .	0.2	0
84	Responses to Environmental Stress in Plants Adapted to Mediterranean Gypsum Habitats. Notulae Scientia Biologicae, 2015, 7, 37-44.	0.1	3
85	Responses to Environmental Stress in Plants Adapted to Mediterranean Gypsum Habitats. Notulae Scientia Biologicae, 2015, 7, .	0.1	4
86	Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43,	0.5	10
87	Identification of Discriminant Factors after Exposure of Maize and Common Bean Plantlets to Abiotic Stresses. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, .	0.5	1
88	Effects of Salt on Seed Germination and Seedling Growth of Three Portulaca Species. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2015, 72, .	0.2	1
89	Anatomical Modifications in two <i style="mso-bidi-font-style:normal">Juncus</i> Species under Salt Stress Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, .	0.5	0
90	Drought Tolerance in Several Tagetes L. Cultivars. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2014, 71, .	0.2	3

#	Article	IF	Citations
91	Growth and Reproductive Success under Saline Conditions of Three <i>Plantago</i> Species with Different Levels of Stress Tolerance. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42,	0.5	7
92	Is salinity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila?. Plant and Soil, 2014, 384, 363-379.	1.8	13
93	Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 2014, 6, plu049-plu049.	1.2	68
94	Improving the abiotic stress tolerance of food crops. Journal of Biotechnology, 2014, 185, S5.	1.9	0
95	Physiological Changes and Osmoregulation in Several Romanian Spruce Populations Exposed to Salt and Drought Stress. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2014, 71, .	0.2	0
96	Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiologiae Plantarum, 2013, 35, 2193-2204.	1.0	10
97	Biotechnological applications of halophytes. Current Opinion in Biotechnology, 2013, 24, S25.	3.3	0
98	Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes?. Functional Plant Biology, 2013, 40, 805.	1.1	92
99	Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 2013, 6, 177-186.	1.2	47
100	Stress tolerance mechanisms in wild plants. Journal of Biotechnology, 2012, 161, 8.	1.9	0
101	Mitigation of Salt Stress-Induced Inhibition of Plantago crassifolia Reproductive Development by Supplemental Calcium or Magnesium. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40, 58.	0.5	37
102	Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach. Notulae Scientia Biologicae, 2012, 4, 23-29.	0.1	47
103	Stress-tolerant Wild Plants: a Source of Knowledge and Biotechnological Tools for the Genetic Improvement of Stress Tolerance in Crop Plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40, 323.	0.5	13
104	Responses to salt stress in <i>Juncus acutus</i> and <i>J. maritimus</i> during seed germination and vegetative plant growth. Plant Biosystems, 2011, 145, 770-777.	0.8	36
105	Opportunistic Germination Behaviour of Gypsophila (Caryophyllaceae) in Two Priority Habitats from Semi-arid Mediterranean Steppes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 18.	0.5	8
106	Soluble Carbohydrates as Osmolytes in Several Halophytes from a Mediterranean Salt Marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39, 09.	0.5	58
107	Transgenic crops: Present status and future developments. Current Opinion in Biotechnology, 2011, 22, S22.	3.3	1
108	Plant responses to abiotic stress. Current Opinion in Biotechnology, 2011, 22, S130.	3.3	3

#	Article	IF	CITATIONS
109	Genetic variability in the endemic Leucojum valentinum. Biologia Plantarum, 2009, 53, 317-320.	1.9	7
110	Nuclear DNA content variation in <i>Halimium</i> and <i>Xolantha</i> (Cistaceae). Plant Biosystems, 2008, 142, 17-23.	0.8	3
111	In situ molecular identification of the Ntf4 MAPK expression sites in maturing and germinating pollen. Biology of the Cell, 2007, 99, 209-221.	0.7	12
112	Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell and Environment, 2006, 29, 1890-1900.	2.8	113
113	Intragenomic diversity and phylogenetic systematics of wild rosemaries (Rosmarinus officinalis L. s.l.,) Tj ETQq1 1 262, 1-12.	0.784314 0.3	rgBT /Overl 27
114	Sp i t zer Mid-Infrared Spectroscopy of Ices toward Extincted Background Stars. Astrophysical Journal, 2005, 635, L145-L148.	1.6	106
115	Effects of salt stress on the reproductive biology of the halophyte Plantago crassifolia. Biologia Plantarum, 2005, 49, 141-143.	1.9	20
116	Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 2005, 57, 375-391.	2.0	104
117	Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 2004, 58, 463-481.	1.2	138
118	Lithium treatment induces a hypersensitive-like response in tobacco. Planta, 2003, 217, 417-424.	1.6	43
119	Salt Stress Proteins Identified by a Functional Approach in Yeast. Monatshefte Fýr Chemie, 2003, 134, 1445-1464.	0.9	19
120	FUNCTIONAL GENOMICS OF SALT TOLERANCE: THE YEAST OVEREXPRESSION APPROACH. Acta Horticulturae, 2003, , 31-38.	0.1	6
121	Intra- and Interspecific Variation in DNA Content in Cistus (Cistaceae). Annals of Botany, 2002, 90, 345-351.	1.4	52
122	The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1565, 36-40.	1.4	43
123	Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant Journal, 2002, 30, 511-519.	2.8	72
124	Chromosome numbers, karyotypes and nuclear DNA contents from perennial polyploid groups of Cerastium (Caryophyllaceae). Plant Systematics and Evolution, 1999, 218, 13-21.	0.3	15
125	Ultrastructural distribution of a MAP kinase and transcripts in quiescent and cycling plant cells and pollen grains. Journal of Cell Science, 1999, 112, 1065-1076.	1.2	31
126	Evidence for the activation of a MAP kinase upon phosphate-induced cell cycle re-entry in tobacco cells. Physiologia Plantarum, 1998, 102, 532-538.	2.6	26

#	Article	IF	CITATIONS
127	A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. Journal of Cell Science, 1998, 111, 3091-3100.	1.2	121
128	A developmentally regulated MAP kinase activated by hydration in tobacco pollen Plant Cell, 1997, 9, 2093-2100.	3.1	99
129	Initiation of microspore embryogenesis by stress. Trends in Plant Science, 1997, 2, 297-302.	4.3	262
130	Stress-induced formation of haploid plants through anther culture in cork oak (Quercus suber). Physiologia Plantarum, 1997, 99, 335-341.	2.6	63
131	Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sexual Plant Reproduction, 1996, 9, 209-215.	2.2	159
132	Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Reports, 1996, 15, 561-565.	2.8	100
133	Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta, 1996, 200, 144.	1.6	81
134	Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 1996, 96, 433-438.	2.6	89
135	In Vitro Pollen Cultures: Progress and Perspectives. , 1996, , 85-109.		8
136	Stability in Ploidy Level During Somatic Embryogenesis in Quercus Canariensis. Forestry Sciences, 1996, , 23-28.	0.4	11
137	Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Reports, 1996, 15, 561-565.	2.8	9
138	Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sexual Plant Reproduction, 1996, 9, 209-215.	2.2	13
139	Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 1996, 96, 433-438.	2.6	15
140	Molecular Cloning, Functional Expression in Escherichia coli, and Characterization of Multiple Mitogen-Activated-Protein Kinases from Tobacco. FEBS Journal, 1995, 233, 249-257.	0.2	67
141	The expression of a small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation*. Plant, Cell and Environment, 1995, 18, 139-147.	2.8	98
142	cDNA cloning and characterization of three genes in the Bet ν 1 gene family that encode pathogenesis-related proteins*. Plant, Cell and Environment, 1995, 18, 865-874.	2.8	53
143	Isolation and expression during pollen development of a tobacco cDNA clone encoding a protein kinase homologous to shaggy/glycogen synthase kinase-3. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1260, 315-319.	2.4	23
144	Sexual plant reproduction research. Protoplasma, 1995, 187, 1-2.	1.0	0

#	Article	IF	Citations
145	In situ characterization of the late vacuolate microspore as a convenient stage to induce embryogenesis inCapsicum. Protoplasma, 1995, 187, 60-71.	1.0	40
146	Expression of Bet ν 1, the major birch pollen allergen, during anther development. Protoplasma, 1995, 187, 103-110.	1.0	33
147	Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum. Protoplasma, 1995, 186, 220-230.	1.0	28
148	Isoforms of Bet ν 1, the Major Birch Pollen Allergen, Analyzed by Liquid Chromatography, Mass Spectrometry, and cDNA Cloning. Journal of Biological Chemistry, 1995, 270, 2607-2613.	1.6	182
149	Maintenance of gametophytic development after symmetrical division in tobacco microspore culture. Sexual Plant Reproduction, 1995, 8, 70.	2.2	24
150	A birch gene family encoding pollen allergens and pathogenesis-related proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 457-464.	2.4	59
151	De novo transcription of specific mRNAs during the induction of tobacco pollen embryogenesis. Sexual Plant Reproduction, 1993, 6, 40.	2.2	48
152	Isolation and characterization of a tobacco cDNA clone encoding a putative MAP kinase. Plant Molecular Biology, 1993, 23, 543-551.	2.0	78
153	Ultrastructural rRNA localization in plant cell nucleoli RNA/RNA in situ hybridization, autoradiography and cytochemistry. Journal of Cell Science, 1993, 106, 1333-1346.	1.2	22
154	Flavonols Stimulate Development, Germination, and Tube Growth of Tobacco Pollen. Plant Physiology, 1992, 100, 902-907.	2.3	192
155	Derepression of the cell cycle by starvation is involved in the induction of tobacco pollen embryogenesis. Sexual Plant Reproduction, 1992, 5, 189-194.	2.2	63
156	Plant endogenous \hat{l}^2 -glucuronidase activity: how to avoid interference with the use of the E. coli \hat{l}^2 -glucuronidase as a reporter gene in transgenic plants. Transgenic Research, 1992, 1, 63-70.	1.3	39
157	Pollen cultures as a tool to study plant development. Cell Biology Reviews: CBR, 1991, 25, 295-306.	0.2	7
158	RNA 3′-terminal phosphate cyclase from HeLa cells. Methods in Enzymology, 1990, 181, 499-510.	0.4	19
159	Phosphorylation and guanine nucleotide exchange on polypeptide chain initiation factor-2 from Artemia embryos. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1007, 55-60.	2.4	5
160	Purification of RNA 3'-terminal-phosphate cyclase from HeLa cells. Covalent modification of the enzyme with different nucleotides. FEBS Journal, 1988, 176, 431-439.	0.2	14
161	Reactivity with monoclonal antibodies of viruses from an episode of foot-and-mouth disease. Virus Research, 1987, 8, 261-274.	1.1	127
162	Protein synthesis in Drosophila melanogaster embryos. Purification and characterization of polypeptide chain-initiation factor 2. FEBS Journal, 1987, 162, 221-229.	0.2	17

OSCAR VICENTE

#	Article	IF	CITATIONS
163	Studies on the activation of the heme-stabilized translational inhibitor of reticulocyte lysates by oxidized glutathione and NADPH depletion. Archives of Biochemistry and Biophysics, 1985, 239, 497-507.	1.4	27
164	Inhibition of eukaryotic cell-free protein synthesis by thionins from wheat endosperm. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1983, 740, 52-56.	2.4	20
165	Preformed mRNA in Cotyledons of Ungerminated Seeds of <i>Cicer arietinum</i> L Plant Physiology, 1980, 65, 1128-1132.	2.3	11