Leandro L Minku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3659319/publications.pdf

Version: 2024-02-01

107 papers 3,730 citations

331670 21 h-index 54 g-index

109 all docs

109 docs citations

109 times ranked 2474 citing authors

#	Article	IF	CITATIONS
1	Ensemble learning for data stream analysis: A survey. Information Fusion, 2017, 37, 132-156.	19.1	724
2	The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data Engineering, 2010, 22, 730-742.	5.7	342
3	DDD: A New Ensemble Approach for Dealing with Concept Drift. IEEE Transactions on Knowledge and Data Engineering, 2012, 24, 619-633.	5 . 7	338
4	Resampling-Based Ensemble Methods for Online Class Imbalance Learning. IEEE Transactions on Knowledge and Data Engineering, 2015, 27, 1356-1368.	5.7	280
5	A Systematic Study of Online Class Imbalance Learning With Concept Drift. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 4802-4821.	11.3	185
6	Online Ensemble Learning of Data Streams with Gradually Evolved Classes. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 1532-1545.	5.7	130
7	Ensembles and locality: Insight on improving software effort estimation. Information and Software Technology, 2013, 55, 1512-1528.	4.4	104
8	A learning framework for online class imbalance learning. , 2013, , .		71
9	Software effort estimation as a multiobjective learning problem. ACM Transactions on Software Engineering and Methodology, 2013, 22, 1-32.	6.0	70
10	An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation. Journal of Systems and Software, 2015, 103, 36-52.	4.5	70
11	Next challenges for adaptive learning systems. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2012, 14, 48-55.	4.0	67
12	A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling. Information Sciences, 2018, 428, 1-29.	6.9	67
13	The impact of parameter tuning on software effort estimation using learning machines. , 2013, , .		57
14	ONLINE CLASS IMBALANCE LEARNING AND ITS APPLICATIONS IN FAULT DETECTION. International Journal of Computational Intelligence and Applications, 2013, 12, 1340001.	0.8	54
15	Concept drift detection for online class imbalance learning. , 2013, , .		53
16	How to make best use of cross-company data in software effort estimation?. , 2014, , .		48
17	Dynamic Software Project Scheduling through a Proactive-Rescheduling Method. IEEE Transactions on Software Engineering, 2016, 42, 658-686.	5.6	47
18	Class Imbalance Evolution and Verification Latency in Just-in-Time Software Defect Prediction., 2019,,.		46

#	Article	IF	CITATIONS
19	Surrogate models in evolutionary single-objective optimization: A new taxonomy and experimental study. Information Sciences, 2021, 562, 414-437.	6.9	46
20	Improved Evolutionary Algorithm Design for the Project Scheduling Problem Based on Runtime Analysis. IEEE Transactions on Software Engineering, 2014, 40, 83-102.	5.6	40
21	Can cross-company data improve performance in software effort estimation?., 2012,,.		37
22	An investigation of cross-project learning in online just-in-time software defect prediction. , 2020, , .		33
23	Negative correlation in incremental learning. Natural Computing, 2009, 8, 289-320.	3.0	32
24	A heterogeneous online learning ensemble for non-stationary environments. Knowledge-Based Systems, 2020, 188, 104983.	7.1	32
25	Metaheuristics "In the Large― European Journal of Operational Research, 2022, 297, 393-406.	5.7	32
26	FEDD: Feature Extraction for Explicit Concept Drift Detection in time series. , 2016, , .		28
27	A novel online supervised hyperparameter tuning procedure applied to cross-company software effort estimation. Empirical Software Engineering, 2019, 24, 3153-3204.	3.9	27
28	Selective negative correlation learning approach to incremental learning. Neurocomputing, 2009, 72, 2796-2805.	5.9	24
29	Less is More: Temporal Fault Predictive Performance over Multiple Hadoop Releases. Lecture Notes in Computer Science, 2014, , 240-246.	1.3	24
30	A principled evaluation of ensembles of learning machines for software effort estimation. , $2011, \dots$		23
31	The impact of data difficulty factors on classification of imbalanced and concept drifting data streams. Knowledge and Information Systems, 2021, 63, 1429-1469.	3.2	22
32	An analysis of multi-objective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation. , 2013 , , .		21
33	Data mining for software engineering and humans in the loop. Progress in Artificial Intelligence, 2016, 5, 307-314.	2.4	20
34	Which models of the past are relevant to the present? A software effort estimation approach to exploiting useful past models. Automated Software Engineering, 2017, 24, 499-542.	2.9	19
35	How to Make Best Use of Cross-Company Data for Web Effort Estimation?., 2015, , .		18
36	Dynamic selection of evolutionary operators based on online learning and fitness landscape analysis. Soft Computing, 2016, 20, 3889-3914.	3.6	18

#	Article	IF	Citations
37	Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling. ACM Transactions on Software Engineering and Methodology, 2019, 28, 1-46.	6.0	16
38	Detecting asthma exacerbations using daily home monitoring and machine learning. Journal of Asthma, 2021, 58, 1518-1527.	1.7	16
39	Are 20% of files responsible for 80% of defects?. , 2018, , .		15
40	When and How to Transfer Knowledge in Dynamic Multi-objective Optimization. , 2019, , .		15
41	Dynamic Selection of Evolutionary Algorithm Operators Based on Online Learning and Fitness Landscape Metrics. Lecture Notes in Computer Science, 2014, , 359-370.	1.3	15
42	An Evolutionary Hyper-heuristic for the Software Project Scheduling Problem. Lecture Notes in Computer Science, 2016, , 37-47.	1.3	14
43	Data-driven search-based software engineering. , 2018, , .		14
44	Better software analytics via "DUO― Data mining algorithms using/used-by optimizers. Empirical Software Engineering, 2020, 25, 2099-2136.	3.9	14
45	The potential benefit of relevance vector machine to software effort estimation. , 2014, , .		13
46	Diversity-Based Pool of Models for Dealing with Recurring Concepts., 2018,,.		13
47	Run-time evaluation of architectures: A case study of diversification in IoT. Journal of Systems and Software, 2020, 159, 110428.	4.5	13
48	AUC Estimation and Concept Drift Detection for Imbalanced Data Streams with Multiple Classes. , 2020, , .		13
49	A Diversity Framework for Dealing With Multiple Types of Concept Drift Based on Clustering in the Model Space. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1299-1309.	11.3	13
50	DESIGN OF EXPERIMENTS IN NEURO-FUZZY SYSTEMS. International Journal of Computational Intelligence and Applications, 2010, 09, 137-152.	0.8	12
51	Evolutionary algorithms for the project scheduling problem. , 2012, , .		12
52	A multi-objective ensemble method for online class imbalance learning. , 2014, , .		12
53	Quantifying The Generative Capabilities Of Variational Autoencoders For 3D Car Point Clouds. , 2020, , .		12
54	Multi-Source Transfer Learning for Non-Stationary Environments. , 2019, , .		11

#	Article	IF	Citations
55	Multifactorial 10-Year Prior Diagnosis Prediction Model of Dementia. International Journal of Environmental Research and Public Health, 2020, 17, 6674.	2.6	11
56	Evaluation of Software Architectures under Uncertainty. ACM Transactions on Software Engineering and Methodology, 2021, 30, 1-50.	6.0	11
57	Learning aesthetic judgements in evolutionary art systems. Genetic Programming and Evolvable Machines, 2013, 14, 315-337.	2.2	10
58	A novel automated approach for software effort estimation based on data augmentation. , 2018, , .		10
59	Transfer Learning in Non-stationary Environments. Studies in Big Data, 2019, , 13-37.	1.1	10
60	Using Goals in Model-Based Reasoning. , 2015, , 321-353.		9
61	Clustering Dycom. , 2017, , .		9
62	Reverse Engineering the Behaviour of Twitter Bots. , 2018, , .		9
63	Tackling Virtual and Real Concept Drifts: An Adaptive Gaussian Mixture Model Approach. IEEE Transactions on Knowledge and Data Engineering, 2021, , 1-1.	5.7	9
64	Effort and Cost in Software Engineering. , 2017, , .		8
65	A hybrid local search framework for the dynamic capacitated arc routing problem. , 2021, , .		8
66	Product Lines, Energy Conservation, Use Cases, Agile Development, and Infotainment. IEEE Software, 2016, 33, 29-31.	1.8	7
67	Time Series Forecasting in the Presence of Concept Drift: A PSO-based Approach. , 2017, , .		7
68	Learning from data streams and class imbalance. Connection Science, 2019, 31, 103-104.	3.0	7
69	Multi-objective software performance optimisation at the architecture level using randomised search rules. Information and Software Technology, 2021, 135, 106565.	4.4	7
70	Towards Reliable Online Just-in-Time Software Defect Prediction. IEEE Transactions on Software Engineering, 2023, 49, 1342-1358.	5.6	7
71	Using unreliable data for creating more reliable online learners. , 2012, , .		6
72	Data science for software engineering., 2013,,.		6

#	Article	IF	Citations
73	Measuring Energy Consumption for Web Service Product Configuration. , 2014, , .		6
74	A Novel Generalized Metaheuristic Framework for Dynamic Capacitated Arc Routing Problems. IEEE Transactions on Evolutionary Computation, 2022, 26, 1486-1500.	10.0	6
75	Adaptive Memory-Enhanced Time Delay Reservoir and its Memristive Implementation. IEEE Transactions on Computers, 2022, 71, 2766-2777.	3.4	6
76	BIAS: A Toolbox for Benchmarking Structural Bias in the Continuous Domain. IEEE Transactions on Evolutionary Computation, 2022, 26, 1380-1393.	10.0	6
77	GMM-VRD: A Gaussian Mixture Model for Dealing With Virtual and Real Concept Drifts. , 2019, , .		5
78	Towards Novel Meta-heuristic Algorithms for Dynamic Capacitated Arc Routing Problems. Lecture Notes in Computer Science, 2020, , 428-440.	1.3	5
79	An evolutionary algorithm for performance optimization at software architecture level. , 2015, , .		4
80	On the Terms Within- and Cross-Company in Software Effort Estimation. , 2016, , .		4
81	Cross-Project Online Just-In-Time Software Defect Prediction. IEEE Transactions on Software Engineering, 2023, 49, 268-287.	5.6	4
82	Ensembles of Learning Machines. , 2015, , 239-265.		3
83	The Art and Science of Analyzing Software Data; Quantitative Methods. , 2015, , .		3
84	Computational Study on Effectiveness of Knowledge Transfer in Dynamic Multi-objective Optimization. , 2020, , .		3
85	Multi-stream online transfer learning for software effort estimation: is it necessary?., 2021,,.		3
86	Diversifying Software Architecture for Sustainability: A Value-Based Perspective. Lecture Notes in Computer Science, 2016, , 55-63.	1.3	3
87	A Procedure to Continuously Evaluate Predictive Performance of Just-In-Time Software Defect Prediction Models During Software Development. IEEE Transactions on Software Engineering, 2023, 49, 646-666.	5.6	3
88	Exploiting Generative Models for Performance Predictions of 3D Car Designs. , 2021, , .		3
89	Exploiting Linear Interpolation of Variational Autoencoders for Satisfying Preferences in Evolutionary Design Optimization. , $2021, \ldots$		2
90	MARLINE: Multi-source Mapping Transfer Learning for Non-Stationary Environments., 2020,,.		2

#	Article	IF	Citations
91	Continuous and Proactive Software Architecture Evaluation: An IoT Case. ACM Transactions on Software Engineering and Methodology, 2022, 31, 1-54.	6.0	2
92	Second-order Time Delay Reservoir Computing for Nonlinear Time Series Problems. , 2021, , .		2
93	What makes the dynamic capacitated Arc routing problem hard to solve. , 2022, , .		2
94	Regression Testing, Spoken Language, Crash-Inducing Commits, UML, and Legal Policy. IEEE Software, 2016, 33, 26-28.	1.8	1
95	Requirements, Human Values, and the Development Technology Landscape. IEEE Software, 2017, 34, 13-15.	1.8	1
96	Highlights from ICSE 2019: Software Security and Mobile App Energy Consumption. IEEE Software, 2019, 36, 29-31.	1.8	1
97	OSNN: An Online Semisupervised Neural Network for Nonstationary Data Streams. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 6029-6041.	11.3	1
98	Dynamic Evaluation of Microservice Granularity Adaptation. ACM Transactions on Autonomous and Adaptive Systems, 2021, 16, 1-35.	0.8	1
99	Software Quality, Energy Awareness, and More. IEEE Software, 2015, 32, 98-100.	1.8	0
100	How to Adapt Models in a Dynamic World. , 2015, , 267-290.		0
101	4th International Workshop on Realizing Al Synergies in Software Engineering (RAISE 2015)., 2015,,.		0
102	Knowledge Representation and Modelling: Structures and Trade-Offs. Natural Computing Series, 2016, , 79-111.	2.2	0
103	Guest editorial: special issue on predictive models for software quality. Software Quality Journal, 2018, 26, 521-523.	2.2	0
104	Empirical Software Engineering, Predictive Models, and Product Lines. IEEE Software, 2018, 35, 8-11.	1.8	0
105	Optimal Evolutionary Optimization Hyper-parameters to Mimic Human User Behavior., 2019,,.		0
106	Conference Highlights: JIT Fault Prevention, Motivated Modeling, Security in Requirements, and Improving Team Performance. IEEE Software, 2020, 37, 83-86.	1.8	0
107	Guest Editorial: Special Issue on Predictive Models and Data Analytics in Software Engineering. Empirical Software Engineering, 2020, 25, 1533-1535.	3.9	O