
Kate M Wassum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3657709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10023-10028.	7.1	427
2	Phasic Dopamine Release Evoked by Abused Substances Requires Cannabinoid Receptor Activation. Journal of Neuroscience, 2007, 27, 791-795.	3.6	334
3	Cannabinoids Enhance Subsecond Dopamine Release in the Nucleus Accumbens of Awake Rats. Journal of Neuroscience, 2004, 24, 4393-4400.	3.6	303
4	The basolateral amygdala in reward learning and addiction. Neuroscience and Biobehavioral Reviews, 2015, 57, 271-283.	6.1	239
5	Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. European Journal of Neuroscience, 2007, 26, 2046-2054.	2.6	155
6	Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations. Journal of Neuroscience, 2017, 37, 8374-8384.	3.6	154
7	Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12512-12517.	7.1	153
8	Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo. Sensors, 2008, 8, 5023-5036.	3.8	123
9	Phasic Mesolimbic Dopamine Signaling Encodes the Facilitation of Incentive Motivation Produced by Repeated Cocaine Exposure. Neuropsychopharmacology, 2014, 39, 2441-2449.	5.4	120
10	Distinct cortical–amygdala projections drive reward value encoding and retrieval. Nature Neuroscience, 2019, 22, 762-769.	14.8	119
11	Differential dependence of Pavlovian incentive motivation and instrumental incentive learning processes on dopamine signaling. Learning and Memory, 2011, 18, 475-483.	1.3	117
12	Phasic Mesolimbic Dopamine Signaling Precedes and Predicts Performance of a Self-Initiated Action Sequence Task. Biological Psychiatry, 2012, 71, 846-854.	1.3	90
13	Nucleus accumbens core dopamine signaling tracks the needâ€based motivational value of foodâ€paired cues. Journal of Neurochemistry, 2016, 136, 1026-1036.	3.9	90
14	Phasic Mesolimbic Dopamine Release Tracks Reward Seeking During Expression of Pavlovian-to-Instrumental Transfer. Biological Psychiatry, 2013, 73, 747-755.	1.3	83
15	The Origins and Organization of Vertebrate Pavlovian Conditioning. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021717.	5.5	83
16	Extracellular Dopamine Levels in Striatal Subregions Track Shifts in Motivation and Response Cost during Instrumental Conditioning. Journal of Neuroscience, 2011, 31, 200-207.	3.6	80
17	Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation. Scientific Reports, 2016, 6, 20231.	3.3	80
18	Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation. Neuropsychopharmacology, 2016, 41, 2830-2838.	5.4	73

KATE M WASSUM

#	Article	IF	CITATIONS
19	Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode arraymicroprobe. Biosensors and Bioelectronics, 2013, 42, 256-260.	10.1	71
20	Nucleus Accumbens Cholinergic Interneurons Oppose Cue-Motivated Behavior. Biological Psychiatry, 2019, 86, 388-396.	1.3	68
21	Transient Extracellular Glutamate Events in the Basolateral Amygdala Track Reward-Seeking Actions. Journal of Neuroscience, 2012, 32, 2734-2746.	3.6	63
22	μ-Opioid Receptor Activation in the Basolateral Amygdala Mediates the Learning of Increases But Not Decreases in the Incentive Value of a Food Reward. Journal of Neuroscience, 2011, 31, 1591-1599.	3.6	59
23	Regulation of habit formation in the dorsal striatum. Current Opinion in Behavioral Sciences, 2018, 20, 67-74.	3.9	53
24	Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions. Scientific Reports, 2015, 5, 12511.	3.3	52
25	Habits Are Negatively Regulated by Histone Deacetylase 3 in the Dorsal Striatum. Biological Psychiatry, 2018, 84, 383-392.	1.3	45
26	Mesolimbic dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. ELife, 2019, 8, .	6.0	45
27	Disruption of endogenous opioid activity during instrumental learning enhances habit acquisition. Neuroscience, 2009, 163, 770-780.	2.3	40
28	A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. ELife, 2021, 10, .	6.0	29
29	Cannabinoid modulation of electrically evoked pH and oxygen transients in the nucleus accumbens of awake rats. Journal of Neurochemistry, 2006, 97, 1145-1154.	3.9	24
30	The Medial Orbitofrontal Cortex–Basolateral Amygdala Circuit Regulates the Influence of Reward Cues on Adaptive Behavior and Choice. Journal of Neuroscience, 2021, 41, 7267-7277.	3.6	24
31	Optogenetic excitation of cholinergic inputs to hippocampus primes future contextual fear associations. Scientific Reports, 2017, 7, 2333.	3.3	23
32	Amygdala muâ€opioid receptors mediate the motivating influence of cueâ€triggered reward expectations. European Journal of Neuroscience, 2017, 45, 381-387.	2.6	21
33	Capturing habitualness of drinking and smoking behavior in humans. Drug and Alcohol Dependence, 2020, 207, 107738.	3.2	16
34	Inflated reward value in early opiate withdrawal. Addiction Biology, 2016, 21, 221-233.	2.6	14
35	Modulation of cueâ€ŧriggered reward seeking by cholinergic signaling in the dorsomedial striatum. European Journal of Neuroscience, 2017, 45, 358-364.	2.6	9
36	Probing the Neurochemical Correlates of Motivation and Decision Making. ACS Chemical Neuroscience, 2015, 6, 11-13.	3.5	6

#	Article	IF	CITATIONS
37	Clarifying punishment. Neuropsychopharmacology, 2018, 43, 1633-1634.	5.4	1
38	Multi-Functional Neural Probes for Pharmacological and Optogenetic Manipulation and Detection of Neurotransmitter Release. , 2018, , .		0
39	Disruption in Pavlovian-Instrumental Transfer as a Function of Depression and Anxiety. Journal of Psychopathology and Behavioral Assessment, 0, , 1.	1.2	0