
Todd S Braver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3655623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Dual Mechanisms of Cognitive Control (DMCC) project: Validation of an online behavioural task battery. Quarterly Journal of Experimental Psychology, 2023, 76, 1457-1480.	1.1	6
2	Investigating mindfulness influences on cognitive function: On the promise and potential of converging research strategies. Psychonomic Bulletin and Review, 2022, 29, 1198-1222.	2.8	9
3	Enhancing task fMRI preprocessing via individualized modelâ€based filtering of intrinsic activity dynamics. NeuroImage, 2022, 247, 118836.	4.2	3
4	Aversive motivation and cognitive control. Neuroscience and Biobehavioral Reviews, 2022, 133, 104493.	6.1	24
5	We need to be braver about the generalizability crisis. Behavioral and Brain Sciences, 2022, 45, e6.	0.7	Ο
6	Incorporating ecological momentary assessment into multimethod investigations of cognitive aging: Promise and practical considerations Psychology and Aging, 2022, 37, 84-96.	1.6	2
7	Domain-general cognitive motivation: Evidence from economic decision-making – Final Registered Report. Cognitive Research: Principles and Implications, 2022, 7, 23.	2.0	4
8	The Dual Mechanisms of Cognitive Control dataset, a theoretically-guided within-subject task fMRI battery. Scientific Data, 2022, 9, 114.	5.3	5
9	Delay of gratification dissociates cognitive control and valuation brain regions in healthy young adults. Neuropsychologia, 2022, 173, 108303.	1.6	2
10	Developing control-theoretic objectives for large-scale brain dynamics and cognitive enhancement. Annual Reviews in Control, 2022, 54, 363-376.	7.9	3
11	A College First-Year Mindfulness Seminar to Enhance Psychological Well-Being and Cognitive Function. Journal of Student Affairs Research and Practice, 2021, 58, 437-451.	0.9	9
12	Measuring the Subjective Cost of Listening Effort Using a Discounting Task. Journal of Speech, Language, and Hearing Research, 2021, 64, 337-347.	1.6	9
13	Domain-general cognitive motivation: evidence from economic decision-making. Cognitive Research: Principles and Implications, 2021, 6, 4.	2.0	9
14	Dorsal Anterior Cingulate Cortex Encodes the Integrated Incentive Motivational Value of Cognitive Task Performance. Journal of Neuroscience, 2021, 41, 3707-3720.	3.6	37
15	Editorial: Motivation-Cognition Interaction: From Neurocognitive Models to Clinical Applications. Frontiers in Psychology, 2021, 12, 684586.	2.1	0
16	A representational similarity analysis of cognitive control during color-word Stroop. Journal of Neuroscience, 2021, 41, JN-RM-2956-20.	3.6	22
17	Neural Coding of Cognitive Control: The Representational Similarity Analysis Approach. Trends in Cognitive Sciences, 2021, 25, 622-638.	7.8	43
18	The Dual Mechanisms of Cognitive Control Project. Journal of Cognitive Neuroscience, 2021, , 1-26.	2.3	23

#	Article	IF	CITATIONS
19	Frontoparietal pattern similarity analyses of cognitive control in monozygotic twins. Neurolmage, 2021, 241, 118415.	4.2	9
20	The Role of Neural Load Effects in Predicting Individual Differences in Working Memory Function. NeuroImage, 2021, 245, 118656.	4.2	3
21	Dissociable Effects of Monetary, Liquid, and Social Incentives on Motivation and Cognitive Control. Frontiers in Psychology, 2020, 11, 2212.	2.1	9
22	Predicting Individual Preferences in Mindfulness Techniques Using Personality Traits. Frontiers in Psychology, 2020, 11, 1163.	2.1	14
23	Towards an Individual Differences Perspective in Mindfulness Training Research: Theoretical and Empirical Considerations. Frontiers in Psychology, 2020, 11, 818.	2.1	32
24	Exploring brain-behavior relationships in the N-back task. NeuroImage, 2020, 212, 116683.	4.2	46
25	Scalable surrogate deconvolution for identification of partially-observable systems and brain modeling. Journal of Neural Engineering, 2020, 17, 046025.	3.5	7
26	Estimation and validation of individualized dynamic brain models with resting state fMRI. NeuroImage, 2020, 221, 117046.	4.2	32
27	Pattern Similarity Analyses of FrontoParietal Task Coding: Individual Variation and Genetic Influences. Cerebral Cortex, 2020, 30, 3167-3183.	2.9	20
28	Examining delay of gratification in healthy aging. Behavioural Processes, 2020, 176, 104125.	1.1	4
29	Effort in daily life: Relationships between experimental tasks and daily experience Motivation Science, 2020, 6, 303-308.	1.6	11
30	Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. NeuroImage, 2019, 202, 116062.	4.2	39
31	Neuroimaging of individual differences: A latent variable modeling perspective. Neuroscience and Biobehavioral Reviews, 2019, 98, 29-46.	6.1	38
32	Editorial. Neuropsychologia, 2019, 123, 1-4.	1.6	2
33	The Subjective Value of Cognitive Effort is Encoded by a Domain-General Valuation Network. Journal of Neuroscience, 2019, 39, 3934-3947.	3.6	70
34	Age-Related Differences in Motivational Integration and Cognitive Control. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 692-714.	2.0	30
35	Reward improves response inhibition by enhancing attentional capture. Social Cognitive and Affective Neuroscience, 2019, 14, 35-45.	3.0	14
36	Intertemporal Decision-Making Involves Prefrontal Control Mechanisms Associated with Working Memory. Cerebral Cortex, 2018, 28, 1105-1116.	2.9	35

#	Article	IF	CITATIONS
37	A role for proactive control in rapid instructed task learning. Acta Psychologica, 2018, 184, 20-30.	1.5	14
38	Interactions of motivation and cognitive control. Current Opinion in Behavioral Sciences, 2018, 19, 83-90.	3.9	119
39	Geometric classification of brain network dynamics via conic derivative discriminants. Journal of Neuroscience Methods, 2018, 308, 88-105.	2.5	1
40	Age-related changes in neural mechanisms of prospective memory. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 982-999.	2.0	23
41	The task novelty paradox: Flexible control of inflexible neural pathways during rapid instructed task learning. Neuroscience and Biobehavioral Reviews, 2017, 81, 4-15.	6.1	59
42	The Role of Psychometrics in Individual Differences Research in Cognition: A Case Study of the AX-CPT. Frontiers in Psychology, 2017, 8, 1482.	2.1	66
43	Inducing Proactive Control Shifts in the AX-CPT. Frontiers in Psychology, 2016, 7, 1822.	2.1	80
44	Reward favors the prepared: Incentive and task-informative cues interact to enhance attentional control Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 52-66.	0.9	54
45	Reward Motivation Enhances Task Coding in Frontoparietal Cortex. Cerebral Cortex, 2016, 26, 1647-1659.	2.9	110
46	Dopamine Does Double Duty in Motivating Cognitive Effort. Neuron, 2016, 89, 695-710.	8.1	214
47	Dissociating proactive and reactive control in the Stroop task. Memory and Cognition, 2016, 44, 778-788.	1.6	84
48	Proactive control of irrelevant task rules during cued task switching. Psychological Research, 2016, 80, 860-876.	1.7	28
49	The Behavioral Relevance of Task Information in Human Prefrontal Cortex. Cerebral Cortex, 2016, 26, 2497-2505.	2.9	67
50	Remembering to prepare: The benefits (and costs) of high working memory capacity Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 1764-1777.	0.9	62
51	Reflexive activation of newly instructed stimulus–response rules: evidence from lateralized readiness potentials in no-go trials. Cognitive, Affective and Behavioral Neuroscience, 2015, 15, 365-373.	2.0	31
52	Cognitive effort: A neuroeconomic approach. Cognitive, Affective and Behavioral Neuroscience, 2015, 15, 395-415.	2.0	354
53	Lateral Prefrontal Cortex Contributes to Fluid Intelligence Through Multinetwork Connectivity. Brain Connectivity, 2015, 5, 497-504.	1.7	80
54	The power of instructions: Proactive configuration of stimulus–response translation Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 768-786.	0.9	80

#	Article	IF	CITATIONS
55	Motivation and Cognitive Control: From Behavior to Neural Mechanism. Annual Review of Psychology, 2015, 66, 83-113.	17.7	618
56	Humans Integrate Monetary and Liquid Incentives to Motivate Cognitive Task Performance. Frontiers in Psychology, 2015, 6, 2037.	2.1	27
57	High dimensional exploration: A comparison of PCA, distance concentration, and classification performance in two fMRI datasets. , 2014, , .		Ο
58	Dissociable influences of reward motivation and positive emotion on cognitive control. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 509-529.	2.0	151
59	Intrinsic and Task-Evoked Network Architectures of the Human Brain. Neuron, 2014, 83, 238-251.	8.1	1,369
60	Mechanisms of motivation–cognition interaction: challenges and opportunities. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 443-472.	2.0	263
61	Dopamine release in nucleus accumbens during rewarded task switching measured by [11C]raclopride. NeuroImage, 2014, 99, 357-364.	4.2	34
62	Motivation and Cognitive Control: Going Beyond Monetary Incentives. , 2014, , 137-162.		10
63	Neural Mechanisms of Time-Based Prospective Memory: Evidence for Transient Monitoring. PLoS ONE, 2014, 9, e92123.	2.5	36
64	Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 2013, 16, 1348-1355.	14.8	1,377
65	Impulsivity and Self-Control during Intertemporal Decision Making Linked to the Neural Dynamics of Reward Value Representation. Journal of Neuroscience, 2013, 33, 344-357.	3.6	111
66	Searchlight analysis: Promise, pitfalls, and potential. NeuroImage, 2013, 78, 261-269.	4.2	195
67	Dissociable Neural Routes to Successful Prospective Memory. Psychological Science, 2013, 24, 1791-1800.	3.3	98
68	The economics of cognitive effort. Behavioral and Brain Sciences, 2013, 36, 704-705.	0.7	12
69	MVPA Permutation Schemes: Permutation Testing in the Land of Cross-Validation. , 2013, , .		28
70	When Planning Results in Loss of Control: Intention-Based Reflexivity and Proactive Control. , 2013, , 263-290.		0
71	What Is the Subjective Cost of Cognitive Effort? Load, Trait, and Aging Effects Revealed by Economic Preference. PLoS ONE, 2013, 8, e68210.	2.5	304
72	Temporal Dynamics of Motivation-Cognitive Control Interactions Revealed by High-Resolution Pupillometry. Frontiers in Psychology, 2013, 4, 15.	2.1	165

#	Article	IF	CITATIONS
73	The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Sciences, 2012, 16, 106-113.	7.8	1,747
74	Global Connectivity of Prefrontal Cortex Predicts Cognitive Control and Intelligence. Journal of Neuroscience, 2012, 32, 8988-8999.	3.6	540
75	The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses. PLoS ONE, 2012, 7, e30284.	2.5	62
76	When planning results in loss of control: intention-based reflexivity and working-memory. Frontiers in Human Neuroscience, 2012, 6, 104.	2.0	59
77	Strategic Insight and Age-Related Goal-Neglect Influence Risky Decision-Making. Frontiers in Neuroscience, 2012, 6, 68.	2.8	8
78	Looking Outside the Searchlight. Lecture Notes in Computer Science, 2012, , 26-33.	1.3	4
79	Integration in Working Memory: A Magnetic Stimulation Study on the Role of Left Anterior Prefrontal Cortex. PLoS ONE, 2012, 7, e43731.	2.5	10
80	Impaired error-likelihood prediction in medial prefrontal cortex in schizophrenia. NeuroImage, 2011, 54, 1506-1517.	4.2	29
81	Domain independence and stability in young and older adults' discounting of delayed rewards. Behavioural Processes, 2011, 87, 253-259.	1.1	125
82	Monetary Incentives Improve Performance, Sometimes: Speed and Accuracy Matter, and so Might Preparation. Frontiers in Psychology, 2011, 2, 325.	2.1	9
83	Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex. Frontiers in Human Neuroscience, 2011, 5, 142.	2.0	82
84	Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span Journal of Experimental Psychology: General, 2011, 140, 674-692.	2.1	191
85	Positive Affect Versus Reward: Emotional and Motivational Influences on Cognitive Control. Frontiers in Psychology, 2011, 2, 279.	2.1	157
86	Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions. PLoS ONE, 2011, 6, e17635.	2.5	26
87	Revealing list-level control in the Stroop task by uncovering its benefits and a cost Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1595-1606.	0.9	63
88	Exploring emotional and cognitive conflict using speeded voluntary facial expressions Emotion, 2010, 10, 842-854.	1.8	11
89	Vive les differences! Individual variation in neural mechanisms of executive control. Current Opinion in Neurobiology, 2010, 20, 242-250.	4.2	113
90	Anticipating the consequences of action: An fMRI study of intention-based task preparation. Psychophysiology, 2010, 47, no-no.	2.4	17

#	Article	IF	CITATIONS
91	Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Frontiers in Human Neuroscience, 2010, 4, 32.	2.0	104
92	Primary and Secondary Rewards Differentially Modulate Neural Activity Dynamics during Working Memory. PLoS ONE, 2010, 5, e9251.	2.5	110
93	Neural Mechanisms of Interference Control in Working Memory: Effects of Interference Expectancy and Fluid Intelligence. PLoS ONE, 2010, 5, e12861.	2.5	110
94	Enhancement of cognitive control by approach and avoidance motivational states. Cognition and Emotion, 2010, 24, 338-356.	2.0	75
95	Age-Related Shifts in Brain Activity Dynamics during Task Switching. Cerebral Cortex, 2010, 20, 1420-1431.	2.9	124
96	Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8871-8876.	7.1	248
97	Motivated Cognitive Control: Reward Incentives Modulate Preparatory Neural Activity during Task-Switching. Journal of Neuroscience, 2010, 30, 10294-10305.	3.6	90
98	Cognitive Neuroscience Approaches to Individual Differences in Working Memory and Executive Control: Conceptual and Methodological Issues. Plenum Series on Human Exceptionality, 2010, , 87-107.	2.0	81
99	Individual Differences in Cognition from a Neurophysiological Perspective: The Commentaries. Plenum Series on Human Exceptionality, 2010, , 169-178.	2.0	1
100	Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7351-7356.	7.1	513
101	CNTRICS Final Task Selection: Executive Control. Schizophrenia Bulletin, 2009, 35, 115-135.	4.3	119
102	Distinct Neural Circuits Support Transient and Sustained Processes in Prospective Memory and Working Memory. Cerebral Cortex, 2009, 19, 1208-1221.	2.9	156
103	Attention, intention, and strategy in preparatory control. Neuropsychologia, 2009, 47, 1670-1685.	1.6	34
104	Are people really more patient than other animals? Evidence from human discounting of real liquid rewards. Psychonomic Bulletin and Review, 2009, 16, 1071-1075.	2.8	105
105	Separating event-related BOLD components within trials: The partial-trial design revisited. NeuroImage, 2009, 47, 501-513.	4.2	19
106	Intellect as distinct from openness: Differences revealed by fMRI of working memory Journal of Personality and Social Psychology, 2009, 97, 883-892.	2.8	207
107	BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis. PLoS ONE, 2009, 4, e4257.	2.5	282
108	Individual Differences in Delay Discounting. Psychological Science, 2008, 19, 904-911.	3.3	391

#	Article	IF	CITATIONS
109	Motivational influences on cognitive control: Behavior, brain activation, and individual differences. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 99-112.	2.0	337
110	A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex. Brain Research, 2008, 1202, 99-108.	2.2	84
111	Executive Functioning Component Mechanisms and Schizophrenia. Biological Psychiatry, 2008, 64, 26-33.	1.3	137
112	Age-related changes in neural activity during performance matched working memory manipulation. NeuroImage, 2008, 42, 1577-1586.	4.2	46
113	Cognitive Control, Goal Maintenance, and Prefrontal Function in Healthy Aging. Cerebral Cortex, 2008, 18, 1010-1028.	2.9	338
114	How Does Reward Expectation Influence Cognition in the Human Brain?. Journal of Cognitive Neuroscience, 2008, 20, 1980-1992.	2.3	41
115	Preparation for integration: the role of anterior prefrontal cortex in working memory. NeuroReport, 2008, 19, 15-19.	1.2	25
116	Explaining the Many Varieties of Working Memory Variation: Dual Mechanisms of Cognitive Control. , 2008, , 76-106.		174
117	A computational model of fractionated conflict-control mechanisms in task-switching. Cognitive Psychology, 2007, 55, 37-85.	2.2	175
118	Medial frontal cortex function: An introduction and overview. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 261-265.	2.0	41
119	Risk prediction and aversion by anterior cingulate cortex. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 266-277.	2.0	137
120	Event perception: A mind-brain perspective Psychological Bulletin, 2007, 133, 273-293.	6.1	745
121	A Computational Model of Event Segmentation From Perceptual Prediction. Cognitive Science, 2007, 31, 613-643.	1.7	112
122	Effects of environmental support and strategy training on older adults' use of context Psychology and Aging, 2006, 21, 499-509.	1.6	104
123	Accounting for Cognitive Aging: Context Processing, Inhibition or Processing Speed?. Aging, Neuropsychology, and Cognition, 2006, 13, 588-610.	1.3	118
124	The Effect of Age on Rule-Based Category Learning. Aging, Neuropsychology, and Cognition, 2006, 13, 411-434.	1.3	24
125	Extracting core components of cognitive control. Trends in Cognitive Sciences, 2006, 10, 529-532.	7.8	67
126	Exactly how are fluid intelligence, working memory, and executive function related? Cognitive neuroscience approaches to investigating the mechanisms of fluid cognition. Behavioral and Brain Sciences, 2006, 29, 128-129.	0.7	12

#	Article	IF	CITATIONS
127	A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 2006, 69, 1322-1326.	5.9	173
128	Computational and neural mechanisms of task switching. Neurocomputing, 2006, 69, 1332-1336.	5.9	28
129	A Direct Comparison of Anterior Prefrontal Cortex Involvement in Episodic Retrieval and Integration. Cerebral Cortex, 2006, 16, 519-528.	2.9	65
130	Functional Specializations in Lateral Prefrontal Cortex Associated with the Integration and Segregation of Information in Working Memory. Cerebral Cortex, 2006, 17, 993-1006.	2.9	80
131	Individual Differences in Amygdala Activity Predict Response Speed during Working Memory. Journal of Neuroscience, 2006, 26, 10120-10128.	3.6	91
132	PREFRONTAL BRAIN ACTIVITY PREDICTS TEMPORALLY EXTENDED DECISION-MAKING BEHAVIOR. Journal of the Experimental Analysis of Behavior, 2005, 84, 537-554.	1.1	29
133	Context Processing and Context Maintenance in Healthy Aging and Early Stage Dementia of the Alzheimer's Type Psychology and Aging, 2005, 20, 33-46.	1.6	163
134	INDIVIDUAL DIFFERENCES: Editorial. Cognitive, Affective and Behavioral Neuroscience, 2005, 5, 115-116.	2.0	13
135	Affective personality differences in neural processing efficiency confirmed using fMRI. Cognitive, Affective and Behavioral Neuroscience, 2005, 5, 182-190.	2.0	181
136	Sustained neural activity associated with cognitive control during temporally extended decision making. Cognitive Brain Research, 2005, 23, 71-84.	3.0	50
137	Cognitive Control and Schizophrenia: Psychological and Neural Mechanisms. , 2005, , 122-159.		9
138	Prefrontal cortex and flexible cognitive control: Rules without symbols. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7338-7343.	7.1	367
139	Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex. Science, 2005, 307, 1118-1121.	12.6	808
140	Dopaminergic modulation of response inhibition: an fMRI study. Cognitive Brain Research, 2004, 20, 438-438.	3.0	0
141	Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biological Psychiatry, 2004, 55, 531-537.	1.3	225
142	Cognitive-pharmacologic functional magnetic resonance imaging in tourette syndrome: a pilot study. Biological Psychiatry, 2004, 55, 916-925.	1.3	21
143	Dopaminergic modulation of response inhibition: an fMRI study. Cognitive Brain Research, 2004, 20, 438-448.	3.0	69
144	Item- and task-level processes in the left inferior prefrontal cortex: positive and negative correlates of encoding. NeuroImage, 2004, 21, 1472-1483.	4.2	54

#	Article	IF	CITATIONS
145	Strategy-dependent changes in memory: Effects on behavior and brain activity. Cognitive, Affective and Behavioral Neuroscience, 2003, 3, 155-167.	2.0	71
146	Neural mechanisms of general fluid intelligence. Nature Neuroscience, 2003, 6, 316-322.	14.8	950
147	Reliability of functional localization using fMRI. NeuroImage, 2003, 20, 1561-1577.	4.2	62
148	Principles of Pleasure Prediction. Neuron, 2003, 38, 150-152.	8.1	16
149	Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching. Neuron, 2003, 39, 713-726.	8.1	729
150	Context-processing deficits in schizophrenia: Diagnostic specificity, 4-week course, and relationships to clinical symptoms Journal of Abnormal Psychology, 2003, 112, 132-143.	1.9	257
151	Where the rubber meets the road: The importance of implementation. Behavioral and Brain Sciences, 2003, 26, 83-84.	0.7	0
152	Context-processing deficits in schizophrenia: diagnostic specificity, 4-week course, and relationships to clinical symptoms. Journal of Abnormal Psychology, 2003, 112, 132-43.	1.9	113
153	Prefrontal Cortex and Dynamic Categorization Tasks: Representational Organization and Neuromodulatory Control. Cerebral Cortex, 2002, 12, 246-257.	2.9	197
154	Personality predicts working-memory-related activation in the caudal anterior cingulate cortex. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 64-75.	2.0	146
155	Integration of emotion and cognition in the lateral prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4115-4120.	7.1	642
156	The Role of Frontopolar Cortex in Subgoal Processing during Working Memory. NeuroImage, 2002, 15, 523-536.	4.2	365
157	Cognitive control in altruism and self-control: A social cognitive neuroscience perspective. Behavioral and Brain Sciences, 2002, 25, 260-260.	0.7	0
158	Computational perspectives on dopamine function in prefrontal cortex. Current Opinion in Neurobiology, 2002, 12, 223-229.	4.2	333
159	A theory of cognitive control, aging cognition, and neuromodulation. Neuroscience and Biobehavioral Reviews, 2002, 26, 809-817.	6.1	518
160	Mechanisms underlying dependencies of performance on stimulus history in a two-alternative forced-choice task. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 283-299.	2.0	104
161	A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 300-317.	2.0	126
162	12. Integration of emotion and cognitive control. Advances in Consciousness Research, 2002, , 289-316.	0.2	19

#	Article	IF	CITATIONS
163	The Role of Prefrontal Cortex in Normal and Disordered Cognitive Control: A Cognitive Neuroscience Perspective. , 2002, , 428-447.		53
164	Direct Comparison of Prefrontal Cortex Regions Engaged by Working and Long-Term Memory Tasks. NeuroImage, 2001, 14, 48-59.	4.2	289
165	Computational Models of Attention and Cognitive Control. , 2001, , 422-450.		7
166	Sensitivity of prefrontal cortex to changes in target probability: A functional MRI study. Human Brain Mapping, 2001, 13, 26-33.	3.6	141
167	Conflict monitoring and cognitive control Psychological Review, 2001, 108, 624-652.	3.8	5,904
168	Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging Journal of Experimental Psychology: General, 2001, 130, 746-763.	2.1	393
169	Human brain activity time-locked to perceptual event boundaries. Nature Neuroscience, 2001, 4, 651-655.	14.8	462
170	Selective Deficits in Prefrontal Cortex Function in Medication-Naive Patients With Schizophrenia. Archives of General Psychiatry, 2001, 58, 280.	12.3	549
171	Anterior Cingulate and the Monitoring of Response Conflict: Evidence from an fMRI Study of Overt Verb Generation. Journal of Cognitive Neuroscience, 2000, 12, 298-309.	2.3	264
172	Working Memory for Letters, Shapes, and Locations: fMRI Evidence against Stimulus-Based Regional Organization in Human Prefrontal Cortex. NeuroImage, 2000, 11, 424-446.	4.2	345
173	Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biological Psychiatry, 1999, 46, 312-328.	1.3	456
174	Overt Verbal Responding during fMRI Scanning: Empirical Investigations of Problems and Potential Solutions. Neurolmage, 1999, 10, 642-657.	4.2	182
175	Chapter 19 Dopamine, cognitive control, and schizophrenia: the gating model. Progress in Brain Research, 1999, 121, 327-349.	1.4	134
176	A Biologically Based Computational Model of Working Memory. , 1999, , 375-411.		170
177	Anterior Cingulate Cortex, Error Detection, and the Online Monitoring of Performance. Science, 1998, 280, 747-749.	12.6	2,996
178	A Parametric Study of Prefrontal Cortex Involvement in Human Working Memory. NeuroImage, 1997, 5, 49-62.	4.2	1,564
179	Temporal dynamics of brain activation during a working memory task. Nature, 1997, 386, 604-608.	27.8	1,861
180	Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 1997, 35, 1373-1380.	1.6	554

9

Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1994, 1, 293-304.	#	Article	IF	CITATIONS
	181	Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1994, 1, 293-304.	3.6	498

182 Working Memory, Executive Control, and Aging. , 0, , .