Jana Wäldchen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3655533/publications.pdf

Version: 2024-02-01

18	1,610	15	19
papers	citations	h-index	g-index
19	19	19	2151 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Recommending plant taxa for supporting on-site species identification. BMC Bioinformatics, 2018, 19, 190.	2.6	332
2	Machine learning for image based species identification. Methods in Ecology and Evolution, 2018, 9, 2216-2225.	5.2	267
3	Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review. Archives of Computational Methods in Engineering, 2018, 25, 507-543.	10.2	247
4	Automated plant species identificationâ€"Trends and future directions. PLoS Computational Biology, 2018, 14, e1005993.	3.2	189
5	Acquiring and preprocessing leaf images for automated plant identification: understanding the tradeoff between effort and information gain. Plant Methods, 2017, 13, 97.	4.3	80
6	Emerging technologies revolutionise insect ecology and monitoring. Trends in Ecology and Evolution, 2022, 37, 872-885.	8.7	72
7	Plant species classification using flower images—A comparative study of local feature representations. PLoS ONE, 2017, 12, e0170629.	2.5	69
8	The influence of changes in forest management over the past 200years on present soil organic carbon stocks. Forest Ecology and Management, 2013, 289, 243-254.	3.2	49
9	Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton. BMC Ecology, 2018, 18, 51.	3.0	46
10	Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods, 2019, 15, 77.	4.3	42
11	The Flora Incognita app – Interactive plant species identification. Methods in Ecology and Evolution, 2021, 12, 1335-1342.	5.2	41
12	Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics, 2019, 20, 4.	2.6	40
13	Estimation of clay content from easily measurable water content of airâ€dried soil. Journal of Plant Nutrition and Soil Science, 2012, 175, 367-376.	1.9	37
14	Crowdâ€sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography, 2021, 44, 1131-1142.	4.5	28
15	Deep Learning in Plant Phenological Research: A Systematic Literature Review. Frontiers in Plant Science, 2022, 13, 805738.	3.6	23
16	Flora Capture: a citizen science application for collecting structured plant observations. BMC Bioinformatics, 2020, 21, 576.	2.6	19
17	Plant image identification application demonstrates high accuracy in Northern Europe. AoB PLANTS, 2021, 13, plab050.	2.3	14
18	Image-Based Automated Recognition of 31 Poaceae Species: The Most Relevant Perspectives. Frontiers in Plant Science, 2021, 12, 804140.	3.6	10