Panos Papalambros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3655341/publications.pdf Version: 2024-02-01

	53794	74163
8,688	45	75
citations	h-index	g-index
353	353	3863
docs citations	times ranked	citing authors
	8,688 citations 353 docs citations	8,68845citationsh-index353353docs citations353times ranked

#	Article	IF	CITATIONS
1	Multiobjective Monotonicity Analysis: Pareto Set Dependency and Trade-Offs Causality in Configuration Design. Journal of Mechanical Design, Transactions of the ASME, 2022, 144, .	2.9	5
2	Perspectives on design creativity and innovation research: 10 years later. International Journal of Design Creativity and Innovation, 2022, 10, 1-30.	1.2	12
3	INTEGRATED NATURAL RESOURCE AND CONSERVATION DEVELOPMENT PROJECT: A REVIEW OF SUCCESS FACTORS FROM A SYSTEMS PERSPECTIVE. Proceedings of the Design Society, 2021, 1, 1867-1876.	0.8	6
4	A System-of-Systems Approach to the Strategic Feasibility of Modular Vehicle Fleets. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2716-2728.	9.3	4
5	Adaptability of modular vehicle fleets to changing supply route characteristics. Journal of Defense Modeling and Simulation, 2020, 17, 327-338.	1.7	0
6	Design teaching as design research validation. International Journal of Design Creativity and Innovation, 2020, 8, 3-4.	1.2	2
7	On the use of coordination strategies in complex engineered system design projects. Design Science, 2020, 6, .	2.1	6
8	Measuring Systems Engineering and Design Thinking Attitudes. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 3939-3948.	0.6	6
9	Designing profitable joint product–service channels: case study on tablet and eBook markets. Design Science, 2019, 5, .	2.1	2
10	Multiobjective optimization of modular design concepts for a collection of interacting systems. Structural and Multidisciplinary Optimization, 2018, 57, 83-94.	3.5	9
11	Robustness and Real Options for Vehicle Design and Investment Decisions Under Gas Price and Regulatory Uncertainties. Journal of Mechanical Design, Transactions of the ASME, 2018, 140, .	2.9	19
12	Influence of automobile seat form and comfort rating on willingness-to-pay. International Journal of Vehicle Design, 2018, 75, 75.	0.3	0
13	Autonomous Electric Vehicle Sharing System Design. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	2.9	51
14	Identifying experts in the crowd for evaluation of engineering designs. Journal of Engineering Design, 2017, 28, 317-337.	2.3	10
15	Deep Design. , 2017, , .		13
16	Design Preference Prediction With Data Privacy Safeguards: A Preliminary Study. , 2017, , .		0
17	Influence of automobile seat form and comfort rating on willingness-to-pay. International Journal of Vehicle Design, 2017, 75, 75.	0.3	7
18	Topology Generation for Hybrid Electric Vehicle Architecture Design. Journal of Mechanical Design, Transactions of the ASME, 2016, 138, .	2.9	45

#	Article	IF	CITATIONS
19	Estimating and Exploring the Product Form Design Space Using Deep Generative Models. , 2016, , .		33
20	An integrated design approach for evaluating the effectiveness and cost of a fleet. Journal of Defense Modeling and Simulation, 2016, 13, 381-397.	1.7	6
21	Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design. Journal of Mechanical Design, Transactions of the ASME, 2016, 138, .	2.9	50
22	A Real Options Approach to Hybrid Electric Vehicle Architecture Design for Flexibility. , 2016, , .		3
23	EcoRacer: Game-Based Optimal Electric Vehicle Design and Driver Control Using Human Players. Journal of Mechanical Design, Transactions of the ASME, 2016, 138, .	2.9	25
24	Balancing design freedom and brand recognition in the evolution of automotive brand styling. Design Science, 2016, 2, .	2.1	21
25	Public investment and electric vehicle design: a model-based market analysis framework with application to a USA–China comparison study. Design Science, 2016, 2, .	2.1	26
26	Improving Design Preference Prediction Accuracy Using Feature Learning. Journal of Mechanical Design, Transactions of the ASME, 2016, 138, .	2.9	31
27	A computational concept generation method for a modular vehicle fleet design. , 2016, , .		4
28	Design Science: Why, What and How. Design Science, 2015, 1, .	2.1	49
28 29	Design Science: Why, What and How. Design Science, 2015, 1, . Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design. , 2015, , .	2.1	49 4
28 29 30	Design Science: Why, What and How. Design Science, 2015, 1, . Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design., 2015,,. Integrated Decision Making in Electric Vehicle and Charging Station Location Network Design. Journal of Mechanical Design, Transactions of the ASME, 2015, 137,.	2.1 2.9	49 4 29
28 29 30 31	Design Science: Why, What and How. Design Science, 2015, 1, . Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design., 2015, , . Integrated Decision Making in Electric Vehicle and Charging Station Location Network Design. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . Autonomous Electric Vehicle Sharing System Design., 2015, , .	2.1 2.9	49 4 29 2
28 29 30 31 32	Design Science: Why, What and How. Design Science, 2015, 1, . Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design., 2015, , . Integrated Decision Making in Electric Vehicle and Charging Station Location Network Design. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . Autonomous Electric Vehicle Sharing System Design., 2015, , . When Crowdsourcing Fails: A Study of Expertise on Crowdsourced Design Evaluation. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, .	2.1 2.9 2.9	49 4 29 2 37
28 29 30 31 32 33	Design Science: Why, What and How. Design Science, 2015, 1, . Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design., 2015, , . Integrated Decision Making in Electric Vehicle and Charging Station Location Network Design. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . Autonomous Electric Vehicle Sharing System Design., 2015, , . When Crowdsourcing Fails: A Study of Expertise on Crowdsourced Design Evaluation. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . New Perspectives on Design Automation: Celebrating the 40th Anniversary of the ASME Design Automation Conference. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, .	2.1 2.9 2.9 2.9	 49 4 29 2 37 4
28 29 30 31 32 33 33	Design Science: Why, What and How. Design Science, 2015, 1, . Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design., 2015, , . Integrated Decision Making in Electric Vehicle and Charging Station Location Network Design. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . Autonomous Electric Vehicle Sharing System Design., 2015, , . When Crowdsourcing Fails: A Study of Expertise on Crowdsourced Design Evaluation. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . New Perspectives on Design Automation: Celebrating the 40th Anniversary of the ASME Design Automation Conference. Journal of Mechanical Design, Transactions of the controllability Grammian in co-design problems. Mechatronics, 2015, 29, 36-45.	2.1 2.9 2.9 2.9 3.3	 49 4 29 2 37 4 6
28 29 30 31 32 33 33 34	Design Science: Why, What and How. Design Science, 2015, 1, . Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design., 2015, , . Integrated Decision Making in Electric Vehicle and Charging Station Location Network Design. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . Autonomous Electric Vehicle Sharing System Design., 2015, , . When Crowdsourcing Fails: A Study of Expertise on Crowdsourced Design Evaluation. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . New Perspectives on Design Automation: Celebrating the 40th Anniversary of the ASME Design Automation Conference. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, . Relationship between coupling and the controllability Grammian in co-design problems. Mechatronics, 2015, 29, 36-45. Electric Vehicle Design Optimization: Integration of a High-Fidelity Interior-Permanent-Magnet Motor Model. IEEE Transactions on Vehicular Technology, 2015, 64, 3870-3877.	2.1 2.9 2.9 2.9 3.3 6.3	 49 4 29 2 37 4 6 53

3

#	Article	IF	CITATIONS
37	Optimal design of commercial vehicle systems using analytical target cascading. Structural and Multidisciplinary Optimization, 2014, 50, 1103-1114.	3.5	35
38	Optimal Dual-Mode Hybrid Electric Vehicle Powertrain Architecture Design for a Variety of Loading Scenarios. , 2014, , .		12
39	A multi-objective optimization framework for assessing military ground vehicle design for safety. Journal of Defense Modeling and Simulation, 2014, 11, 33-46.	1.7	8
40	Solving multiobjective optimization problems using quasi-separable MDO formulations and analytical target cascading. Structural and Multidisciplinary Optimization, 2014, 50, 849-859.	3.5	21
41	Enhanced Adaptive Choice-Based Conjoint Analysis Incorporating Engineering Knowledge. , 2014, , .		0
42	Improving Preference Prediction Accuracy With Feature Learning. , 2014, , .		2
43	Coupling Between Component Sizing and Regulation Capability in Microgrids. IEEE Transactions on Smart Grid, 2013, 4, 1576-1585.	9.0	62
44	Homogeneous charge compression ignition technology implemented in a hybrid electric vehicle: System optimal design and benefit analysis for a power-split architecture. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227, 87-98.	1.9	15
45	A Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems. Procedia Computer Science, 2013, 16, 1142-1151.	2.0	24
46	A market systems analysis of the U.S. Sport Utility Vehicle market considering frontal crash safety technology and policy. Accident Analysis and Prevention, 2013, 50, 943-954.	5.7	9
47	Sequential co-design of an artifact and its controller via control proxy functions. Mechatronics, 2013, 23, 409-418.	3.3	28
48	Design of Hybrid-Electric Vehicle Architectures Using Auto-Generation of Feasible Driving Modes. , 2013, , .		24
49	Quantification of the design relationship between ground vehicle weight and occupant safety under blast loading. International Journal of Vehicle Design, 2013, 61, 204.	0.3	0
50	Towards a comprehensive framework for simulation-based design validation of vehicle systems. International Journal of Vehicle Design, 2013, 61, 233.	0.3	3
51	On the impact of the regulatory frontal crash test speed on optimal vehicle design and road traffic injuries. International Journal of Vehicle Design, 2013, 63, 39.	0.3	1
52	A Simulation Based Estimation of Crowd Ability and its Influence on Crowdsourced Evaluation of Design Concepts. , 2013, , .		9
53	Maximizing Design Confidence in Sequential Simulation-Based Optimization. Journal of Mechanical Design, Transactions of the ASME, 2013, 135, .	2.9	4
54	A Scalable Preference Elicitation Algorithm Using Group Generalized Binary Search. , 2013, , .		1

#	Article	IF	CITATIONS
55	Optimization of Ground Vehicle Systems. , 2013, , 241-261.		Ο
56	Optimal Design of Commercial Vehicle Systems Using Analytical Target Cascading. , 2012, , .		4
57	Five Years of Design Thinking. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	Ο
58	Perceptual Attributes in Product Design: Fuel Economy and Silhouette-Based Perceived Environmental Friendliness Tradeoffs in Automotive Vehicle Design. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	20
59	Combined design and robust control of a vehicle passive/active suspension. International Journal of Vehicle Design, 2012, 59, 315.	0.3	13
60	Finding and Counting Papers. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	0
61	A Letter From Singapore. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	Ο
62	A Design Societies Federation. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	0
63	Duality and Design. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	Ο
64	Real Design Matters. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	0
65	The Design Universe: A Journal's Perspective. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	Ο
66	A heuristic sequencing procedure for sequential solution of decomposed optimal design problems. Structural and Multidisciplinary Optimization, 2012, 45, 1-20.	3.5	3
67	On Design Preference Elicitation With Crowd Implicit Feedback. , 2012, , .		5
68	On the Use of Active Learning in Engineering Design. , 2012, , .		1
69	Incorporating user shape preference in engineering design optimisation. Journal of Engineering Design, 2011, 22, 627-650.	2.3	45
70	Modelling perceptions of craftsmanship in vehicle interior design. Journal of Engineering Design, 2011, 22, 129-144.	2.3	15
71	Enhancing marketing with engineering: Optimal product line design for heterogeneous markets. International Journal of Research in Marketing, 2011, 28, 1-12.	4.2	91
72	Referencing. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0

#	Article	IF	CITATIONS
73	A Primer on JMD's Reviewing and Publication Process. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0
74	Design and the National Agenda. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0
75	A Quick View From Pacific Asia. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	Ο
76	JMD's Three-Month Review Policy Pledge. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0
77	A World of Design Perspectives. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0
78	Design Education Research. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0
79	What Graduate Students Want to Know. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	Ο
80	Industrial Research Contributions. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0
81	Evidence for using Interactive Genetic Algorithms in shape preference assessment. International Journal of Product Development, 2011, 13, 168.	0.2	9
82	Constraint Management of Reduced Representation Variables in Decomposition-Based Design Optimization. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	15
83	Model Predictive Control of a Microgrid With Plug-In Vehicles: Error Modeling and the Role of Prediction Horizon. , 2011, , .		13
84	Control Proxy Functions for Sequential Design and Control Optimization. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	31
85	Combined Robust Design and Robust Control of an Electric DC Motor. IEEE/ASME Transactions on Mechatronics, 2011, 16, 574-582.	5.8	71
86	Pareto set analysis: local measures of objective coupling in multiobjective design optimization. Structural and Multidisciplinary Optimization, 2011, 43, 617-630.	3.5	18
87	Efficient multi-level design optimization using analytical target cascading and sequential quadratic programming. Structural and Multidisciplinary Optimization, 2011, 44, 351-362.	3.5	18
88	Reduced representations of vector-valued coupling variables in decomposition-based design optimization. Structural and Multidisciplinary Optimization, 2011, 44, 379-391.	3.5	12
89	Comparison of early-stage design methods for a two-mode hybrid electric vehicle. , 2011, , .		2
90	Optimal Component Sizing and Forward-Looking Dispatch of an Electrical Microgrid for Energy Storage Planning. , 2011, , .		22

#	Article	IF	CITATIONS
91	A New Knowledge Ecosystem. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0
92	Generalized Coupling Management in Complex Engineering Systems Optimization. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	7
93	Design Research. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	0
94	A Design Preference Elicitation Query as an Optimization Process. Journal of Mechanical Design, Transactions of the ASME, 2011, 133, .	2.9	28
95	Design Preference Elicitation Using Efficient Global Optimization. , 2011, , .		0
96	A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	23
97	Consistency Constraint Allocation in Augmented Lagrangian Coordination. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	9
98	Optimal Design of Hybrid Electric Fuel Cell Vehicles Under Uncertainty and Enterprise Considerations. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	5
99	A Note on the Convergence of Analytical Target Cascading With Infinite Norms. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	8
100	On the Suitability of Econometric Demand Models in Design for Market Systems. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	47
101	Validating Designs Through Sequential Simulation-Based Optimization. , 2010, , .		23
102	Sequential Co-Design of an Artifact and its Controller Via Control Proxy Functions. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 125-130.	0.4	4
103	Constraint Management of Reduced Representation Variables in Decomposition-Based Design Optimization. , 2010, , .		3
104	The Case for Urban Vehicles: Powertrain Optimization of a Power-Split Hybrid for Fuel Economy on Multiple Drive Cycles. , 2010, , .		6
105	An SLP filter algorithm for probabilistic analytical target cascading. Structural and Multidisciplinary Optimization, 2010, 41, 935-945.	3.5	12
106	A method for reliability-based optimization with multiple non-normal stochastic parameters: a simplified airshed management study. Stochastic Environmental Research and Risk Assessment, 2010, 24, 101-116.	4.0	7
107	Systems and Design. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	0
108	The Mechanisms and Robotics Community and JMD. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	0

#	Article	IF	CITATIONS
109	The Human Dimension. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	8
110	JMD in the New Decade. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	0
111	Design: The New Frontier. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	Ο
112	Who is a JMD Reviewer?. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	0
113	An Invitation to a Broader Discourse. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	Ο
114	Special Issue on Sustainable Design. Journal of Mechanical Design, Transactions of the ASME, 2010, 132,	2.9	0
115	Blind and at Arm's Length. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	0
116	Gears and Transmissions: Quintessential Mechanical Design. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	0
117	Quantification of Perceived Environmental Friendliness for Vehicle Silhouette Design. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	43
118	Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2010, 132, .	1.6	76
119	Business Models. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	Ο
120	An Investigation of Sustainability, Preference, and Profitability in Design Optimization. , 2010, , .		10
121	Design Intent. Journal of Mechanical Design, Transactions of the ASME, 2010, 132, .	2.9	2
122	Online Identification and Stochastic Control for Autonomous Internal Combustion Engines. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2010, 132, .	1.6	30
123	An Accuracy Assessment Method for Two-Dimensional Functional Data in Simulation-Based Design. , 2010, , .		1
124	Design Preference Elicitation, Derivative-Free Optimization and Support Vector Machine Search. , 2010,		3
125	Navigating the Barriers to Interdisciplinary Design Education: Lessons Learned From the NSF Design Workshop Series. , 2010, , .		4
126	Preference Inconsistency in Multidisciplinary Design Decision Making. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	66

#	Article	IF	CITATIONS
127	First Author. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	Ο
128	Titles and Abstracts. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	0
129	The Language Moment. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	0
130	Time for Design Innovation. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	1
131	Journal Articles and Conference Proceedings: Deontology and a Bit of History. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	Ο
132	Graduate Design Education Workshops: A First Review. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	0
133	Who Cares for Planet Earth?. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	1
134	Scholarly Worldly Relevance. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	0
135	The construction of preferences for crux and sentinel product attributes. Journal of Engineering Design, 2009, 20, 609-626.	2.3	28
136	Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	46
137	Design of Smart Structures and Systems. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	0
138	Real-Time Self-Learning Optimization of Diesel Engine Calibration. Journal of Engineering for Gas Turbines and Power, 2009, 131, .	1.1	34
139	A Real-Time Computational Learning Model for Sequential Decision-Making Problems Under Uncertainty. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2009, 131, .	1.6	14
140	A Methodology for Quantifying the Perceived Environmental Friendliness of Vehicle Silhouettes in Engineering Design. , 2009, , .		6
141	Engine optimal operation lines for power-split hybrid electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223, 1149-1162.	1.9	37
142	A cross-cultural study of users' craftsmanship perceptions in vehicle interior design. International Journal of Product Development, 2009, 7, 28.	0.2	18
143	On Measures of Coupling Between the Artifact and Controller Optimal Design Problems. , 2009, , .		23
144	Product semantics and wine portfolio optimisation. International Journal of Product Development, 2009, 7, 73.	0.2	17

#	Article	IF	CITATIONS
145	Methods for Evaluating Suitability of Econometric Demand Models in Design for Market Systems. , 2009, , .		2
146	A New Service: Archiving Supplemental Material to Journal Publication. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	2.9	0
147	A Comprehensive Metric for Comparing Time Histories in Validation of Simulation Models With Emphasis on Vehicle Safety Applications. , 2008, , .		26
148	Multiobjective Optimization for Integrated Tolerance Allocation and Fixture Layout Design in Multistation Assembly. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008, 130, .	2.2	19
149	Consistency Constraint Allocation in Augmented Lagrangian Coordination. , 2008, , .		5
150	The Evolution and the Future of Mechanical Design. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	1
151	Product and Process Tolerance Allocation in Multistation Compliant Assembly Using Analytical Target Cascading. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, 091701.	2.9	24
152	Optimal Design of Hybrid Fuel Cell Vehicles. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	16
153	Co-Design of a MEMS Actuator and Its Controller Using Frequency Constraints. , 2008, , .		9
154	Design Innovation. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	2
155	Recycling and Republishing. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	0
156	Optimal Engine Calibration for Individual Driving Styles. , 2008, , .		16
157	A Manuscript's Journey. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	0
158	Optimal Design of Hybrid Electric Fuel Cell Vehicles Under Uncertainty and Enterprise Considerations. , 2008, , .		0
159	Editorial: A New Year, a New Editor, and a New Journal. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	0
160	Clobalization and Internationalism. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	0
161	On Journal Impact Factors. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	1
162	Design Analysis and Synthesis. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	1

#	Article	IF	CITATIONS
163	June Editorial. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	3
164	Replicating Results in Archival Publications. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	0
165	A Good Review. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	0
166	A View of Design Research. Journal of Mechanical Design, Transactions of the ASME, 2008, 130, .	2.9	1
167	A Pareto Approach to Aligning Public and Private Objectives in Vehicle Design. , 2008, , .		8
168	Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization. , 2007, , 709.		4
169	Optimizing Truck Cab Layout for Driver Accommodation. Journal of Mechanical Design, Transactions of the ASME, 2007, 129, 1110-1117.	2.9	43
170	A Learning Algorithm for Optimal Internal Combustion Engine Calibration in Real Time. , 2007, , 91.		15
171	Preference Inconsistency in Multidisciplinary Design Decision Making. , 2007, , 219.		2
172	Reliability Optimization With Mixed Continuous-Discrete Random Variables and Parameters. Journal of Mechanical Design, Transactions of the ASME, 2007, 129, 158-165.	2.9	24
173	A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading. , 2007, , 739.		4
174	On Selecting Single-Level Formulations for Complex System Design Optimization. Journal of Mechanical Design, Transactions of the ASME, 2007, 129, 898-906.	2.9	22
175	An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints. Journal of Mechanical Design, Transactions of the ASME, 2007, 129, 140-149.	2.9	39
176	Combined design and robust control of a vehicle passive/active suspension. , 2007, , .		8
177	Real-Time, Self-Learning Optimization of Diesel Engine Calibration. , 2007, , .		6
178	A State-Space Representation Model and Learning Algorithm for Real-Time Decision-Making Under Uncertainty. , 2007, , .		6
179	Coupling in design and robust control optimization. , 2007, , .		8
180	Analytical Target Cascading in Aircraft Design. , 2006, , .		23

#	Article	IF	CITATIONS
181	Impact of Uncertainty Quantification on Design Decisions for a Hydraulic-Hybrid Powertrain Engine. , 2006, , .		3
182	Aircraft Family Design Using Decomposition-Based Methods. , 2006, , .		25
183	A Critical Review of Optimization Methods for Road Vehicles Design. , 2006, , .		9
184	Impact of uncertainty quantification on design: an engine optimisation case study. International Journal of Reliability and Safety, 2006, 1, 225.	0.2	7
185	Optimal Design With Non-Normally Distributed Random Parameters, Conditional Probability, and Joint Constraint Reliabilities: A Case Study in Vehicle Emissions Regulations to Achieve Ambient Air Quality Standards. , 2006, , 1131.		0
186	Analytical Target Setting: An Enterprise Context in Optimal Product Design. Journal of Mechanical Design, Transactions of the ASME, 2006, 128, 4-13.	2.9	39
187	Combined Robust Design and Robust Control of an Electric DC Motor. , 2006, , 989.		6
188	A Bayesian Approach to Reliability-Based Optimization With Incomplete Information. Journal of Mechanical Design, Transactions of the ASME, 2006, 128, 909-918.	2.9	71
189	Monotonicity and Active Set Strategies in Probabilistic Design Optimization. Journal of Mechanical Design, Transactions of the ASME, 2006, 128, 893-900.	2.9	18
190	An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Structural and Multidisciplinary Optimization, 2006, 31, 176-189.	3.5	251
191	BB-ATC: Analytical Target Cascading Using Branch and Bound for Mixed-Integer Nonlinear Programming. , 2006, , 685.		4
192	Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty. Journal of Mechanical Design, Transactions of the ASME, 2006, 128, 991.	2.9	88
193	Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty. Journal of Mechanical Design, Transactions of the ASME, 2006, 128, 503-508.	2.9	84
194	Interpolation of energy performance data for building design decisions. International Journal of Sustainable Energy, 2006, 25, 79-88.	2.4	0
195	Balancing Marketing and Manufacturing Objectives in Product Line Design. Journal of Mechanical Design, Transactions of the ASME, 2006, 128, 1196-1204.	2.9	123
196	Quantitative platform selection in optimal design of product families, with application to automotive engine design. Journal of Engineering Design, 2006, 17, 429-446.	2.3	45
197	Target Exploration for Disconnected Feasible Regions in Enterprise-Driven Multilevel Product Design. AIAA Journal, 2006, 44, 67-77.	2.6	29

Analytical Target Cascading in Product Family Design. , 2006, , 225-240.

#	Article	IF	CITATIONS
199	An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints. , 2005, , 1111.		6
200	On the Impact of Coupling Strength on Complex System Optimization for Single-Level Formulations. , 2005, , 265.		12
201	Improving an Ergonomics Testing Procedure via Approximation-based Adaptive Experimental Design. Journal of Mechanical Design, Transactions of the ASME, 2005, 127, 1006-1013.	2.9	27
202	Linking Optimal Design Decisions to the Theory of the Firm: The Case of Resource Allocation. Journal of Mechanical Design, Transactions of the ASME, 2005, 127, 358.	2.9	26
203	An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading. Journal of Mechanical Design, Transactions of the ASME, 2005, 127, 206-214.	2.9	61
204	Weights, Norms, and Notation in Analytical Target Cascading. Journal of Mechanical Design, Transactions of the ASME, 2005, 127, 499-501.	2.9	35
205	Platform Selection Under Performance Bounds in Optimal Design of Product Families. Journal of Mechanical Design, Transactions of the ASME, 2005, 127, 524.	2.9	69
206	Analytic target cascading in simulation-based building design. Automation in Construction, 2005, 14, 551-568.	9.8	62
207	Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading*. Journal of Product Innovation Management, 2005, 22, 42-62.	9.5	225
208	Coordination specification in distributed optimal design of multilevel systems using the ? language. Structural and Multidisciplinary Optimization, 2005, 29, 198-212.	3.5	11
209	Design Under Uncertainty and Assessment of Performance Reliability of a Dual-Use Medium Truck with Hydraulic-Hybrid Powertrain and Fuel Cell Auxiliary Power Unit. , 2005, , .		7
210	Quantification and Use of System Coupling in Decomposed Design Optimization Problems. , 2005, , 95.		18
211	A Hierarchical Design Optimization Approach for Meeting Building Performance Targets. Architectural Engineering and Design Management, 2005, 1, 57-76.	1.7	3
212	Robust Truck Cabin Layout Optimization Using Advanced Driver Variance Models. , 2005, , 1103.		7
213	Manufacturing Investment and Allocation in Product Line Design Decision-Making. , 2005, , 189.		9
214	Optimization and integration of ground vehicle systems. Vehicle System Dynamics, 2005, 43, 437-453.	3.7	30
215	A Survey of Structural Optimization in Mechanical Product Development. Journal of Computing and Information Science in Engineering, 2005, 5, 214-226.	2.7	86
216	Reliability Optimization Involving Mixed Continuous-Discrete Uncertainties. , 2005, , .		2

4

#	ARTICLE	IF	CITATIONS
217	Monotonicity and Active Set Strategies in Probabilistic Design Optimization. , 2005, , .		0
218	Model Based Analysis of Performance-Cost Tradeoffs for Engine Manifold Surface Finishing. , 2004, , .		3
219	Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty. , 2004, , 613.		32
220	Combined optimisation of design and power management of the hydraulic hybrid propulsion system for the 6 ? 6 medium truck. International Journal of Heavy Vehicle Systems, 2004, 11, 372.	0.2	121
221	Product Tolerance Allocation in Compliant Multistation Assembly Through Variation Propagation and Analytical Target Cascading. , 2004, , 813.		8
222	A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions. Journal of Mechanical Design, Transactions of the ASME, 2004, 126, 1062-1070.	2.9	109
223	A sensitivity-based commonality strategy for family products of mild variation, with application to automotive body structures. Structural and Multidisciplinary Optimization, 2004, 27, 89-96.	3.5	49
224	Fast Parameter Optimization of Large-Scale Electromagnetic Objects Using DIRECT with Kriging Metamodeling. IEEE Transactions on Microwave Theory and Techniques, 2004, 52, 276-285.	4.6	54
225	Target Feasibility Achievement in Enterprise-Driven Hierarchical Multidisciplinary Design. , 2004, , .		7
226	Combined maximisation of interior comfort and frontal crashworthiness in preliminary vehicle design. International Journal of Vehicle Design, 2004, 35, 167.	0.3	21
227	Simulation-based optimal design of heavy trucks by model-based decomposition: an extensive analytical target cascading case study. International Journal of Heavy Vehicle Systems, 2004, 11, 403.	0.2	41
228	An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading. , 2004, , 159.		14
229	Analytical Target Cascading in Automotive Vehicle Design. Journal of Mechanical Design, Transactions of the ASME, 2003, 125, 481-489.	2.9	211
230	Optimization for RF coupling and interference reduction of devices in complex systems. , 2003, , .		2
231	Target Cascading in Optimal System Design. Journal of Mechanical Design, Transactions of the ASME, 2003, 125, 474-480.	2.9	413
232	Convergence Properties of Analytical Target Cascading. AIAA Journal, 2003, 41, 897-905.	2.6	232
233	Integrated Plant, Observer, and Controller Optimization With Application to Combined Passive/Active Automotive Suspensions. , 2003, , 225.		23

Analytical Target Setting: An Enterprise Context in Optimal Product Design. , 2003, , .

#	Article	IF	CITATIONS
235	A Study of Emission Policy Effects on Optimal Vehicle Design Decisions. , 2003, , .		3
236	An Enterprise Decision Model for Optimal Vehicle Design and Technology Valuation. , 2003, , .		4
237	Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization. Engineering Optimization, 2002, 34, 263-278.	2.6	348
238	Combined Optimal Design and Control With Application to an Electric DC Motor. Journal of Mechanical Design, Transactions of the ASME, 2002, 124, 183-191.	2.9	64
239	Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families. , 2002, , 613.		39
240	Adaptive Experimental Design Applied to Ergonomics Testing Procedure. , 2002, , 529.		27
241	Target cascading in vehicle redesign: a class VI truck study. International Journal of Vehicle Design, 2002, 29, 199.	0.3	108
242	Interactive design optimization of architectural layouts. Engineering Optimization, 2002, 34, 485-501.	2.6	51
243	Architectural layout design optimization. Engineering Optimization, 2002, 34, 461-484.	2.6	146
244	Design optimization of conformal antennas by integrating stochastic algorithms with the hybrid finite-element method. IEEE Transactions on Antennas and Propagation, 2002, 50, 676-684.	5.1	27
245	Convergence Properties of Analytical Target Cascading. , 2002, , .		18
246	Global Optimization of Problems with Disconnected Feasible Regions via Surrogate Modeling. , 2002, , .		27
247	A Sensitivity-Based Commonality Strategy for Family Products of Mild Variation, with Application to Automotive Body Structures. , 2002, , .		19
248	Analytical Target Cascading for the Design of an Advanced Technology Heavy Truck. , 2002, , 3.		6
249	Frequency selective surface design by integrating optimisation algorithms with fast full wave numerical methods. IET Microwaves Antennas and Propagation, 2002, 149, 175-180.	1.2	6
250	Special issue on commercial design optimization software: an introductory note. Structural and Multidisciplinary Optimization, 2002, 23, 95-96.	3.5	1
251	Extension of the target cascading formulation to the design of product families. Structural and Multidisciplinary Optimization, 2002, 24, 293-301.	3.5	91
252	The optimization paradigm in engineering design: promises and challenges. CAD Computer Aided Design, 2002, 34, 939-951.	2.7	50

#	Article	IF	CITATIONS
253	Optimal Design Decisions in Product Portfolio Valuation. , 2002, , .		29
254	Nested Optimization of an Elevator and Its Gain-Scheduled LQG Controller. , 2002, , .		8
255	Exact and Accurate Solutions in the Approximate Reanalysis of Structures. AIAA Journal, 2001, 39, 2198-2205.	2.6	46
256	On the coupling between the plant and controller optimization problems. , 2001, , .		154
257	Design of an Advanced Heavy Tactical Truck: A Target Cascading Case Study. , 2001, , .		18
258	Structural reanalysis for topological modifications - a unified approach. Structural and Multidisciplinary Optimization, 2001, 21, 333-344.	3.5	62
259	Exact and Accurate Reanalysis of Structures for Geometrical Changes. Engineering With Computers, 2001, 17, 363-372.	6.1	29
260	Accurate displacement derivatives for structural optimization using approximate reanalysis. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 3945-3956.	6.6	29
261	Title is missing!. Computational Optimization and Applications, 2001, 18, 273-293.	1.6	19
262	Multicriteria Optimization in Product Platform Design. Journal of Mechanical Design, Transactions of the ASME, 2001, 123, 199-204.	2.9	142
263	Analytical Target Cascading in Automotive Vehicle Design. , 2001, , .		15
264	Comparison of Combined Embodiment Design and Control Optimization Strategies Using Optimality Conditions. , 2001, , .		20
265	Exact and accurate solutions in the approximate reanalysis of structures. AIAA Journal, 2001, 39, 2198-2205.	2.6	2
266	Metamodeling sampling criteria in a global optimization framework. , 2000, , .		29
267	Application of a product platform design process to automotive powertrains. , 2000, , .		23
268	An Investigation Into Modeling and Solution Strategies for Optimal Design and Control. , 2000, , .		6
269	Target Cascading in Optimal System Design. , 2000, , .		50
270	Integration and Use of Diesel Engine, Driveline and Vehicle Dynamics Models for Heavy Duty Truck Simulation. , 1999, , .		16

#	Article	IF	CITATIONS
271	Optimization Approach to Hybrid Electric Propulsion System Designâ^—. Mechanics Based Design of Structures and Machines, 1999, 27, 393-421.	0.6	75
272	Hierarchical Overlapping Coordination for Large-Scale Optimization by Decomposition. AIAA Journal, 1999, 37, 890-896.	2.6	51
273	Optimal design of automotive hybrid powertrain systems. , 1999, , .		48
274	DECOMPOSITION ANALYSIS AND OPTIMIZATION OF AN AUTOMOTIVE POWERTRAIN DESIGN MODEL. Engineering Optimization, 1999, 31, 273-299.	2.6	5
275	CORBA-Based Object-Oriented Framework for Distributed System Designâ€. Mechanics Based Design of Structures and Machines, 1999, 27, 365-392.	0.6	9
276	The Use of Trust Region Algorithms to Exploit Discrepancies in Function Computation Time Within Optimization Models. Journal of Mechanical Design, Transactions of the ASME, 1999, 121, 552-556.	2.9	3
277	Optimal Design and Control of an Electric DC Motor. , 1999, , .		6
278	Multicriteria Optimization in Product Platform Design. , 1999, , .		8
279	Hierarchical overlapping coordination for large-scale optimization by decomposition. AIAA Journal, 1999, 37, 890-896.	2.6	4
280	A modified trust region algorithm for hierarchical NLP. Structural Optimization, 1998, 16, 19-28.	0.6	4
281	Hierarchical overlapping coordination under nonlinear constraints. , 1998, , .		2
282	Optimal Design of a Hybrid Electric Powertrain System*. Mechanics Based Design of Structures and Machines, 1997, 25, 267-286.	0.6	8
283	Sequentially Decomposed Programming. AIAA Journal, 1997, 35, 1209-1216.	2.6	9
284	Optimal Hierarchical Decomposition Synthesis Using Integer Programming. Journal of Mechanical Design, Transactions of the ASME, 1997, 119, 440-447.	2.9	36
285	Hierarchical Decomposition Synthesis in Optimal Systems Design. Journal of Mechanical Design, Transactions of the ASME, 1997, 119, 448-457.	2.9	35
286	Designing broad-band patch antennas using the sequential quadratic programming method. IEEE Transactions on Antennas and Propagation, 1997, 45, 1689-1692.	5.1	17
287	A Hypergraph Framework for Optimal Model-Based Decomposition of Design Problems. Computational Optimization and Applications, 1997, 8, 173-196.	1.6	73
288	OPTIMAL STRUCTURAL TOPOLOGY DESIGN USING THE HOMOGENIZATION METHOD WITH MULTIPLE CONSTRAINTS. Engineering Optimization, 1996, 27, 87-108.	2.6	5

#	Article	IF	CITATIONS
289	MULTICRITERIA OPTIMIZATION OF ANTI-LOCK BRAKING SYSTEM CONTROL ALGORITHMS. Engineering Optimization, 1996, 27, 199-227.	2.6	5
290	A NOTE ON WEIGHTED CRITERIA METHODS FOR COMPROMISE SOLUTIONS IN MULTI-OBJECTIVE OPTIMIZATION. Engineering Optimization, 1996, 27, 155-176.	2.6	209
291	A Deterministic Global Design Optimization Method for Nonconvex Generalized Polynomial Problems. Journal of Mechanical Design, Transactions of the ASME, 1996, 118, 75-81.	2.9	6
292	A Convex Cutting Plane Algorithm for Global Solution of Generalized Polynomial Optimal Design Models. Journal of Mechanical Design, Transactions of the ASME, 1996, 118, 82-88.	2.9	6
293	A QUASI-MONTE CARLO METHOD FOR MULTICRITERIA DESIGN OPTIMIZATION. Engineering Optimization, 1996, 27, 177-198.	2.6	4
294	On Global Feasible Search for Global Design Optimization with Application to Generalized Polynomial Models. Journal of Mechanical Design, Transactions of the ASME, 1995, 117, 402-408.	2.9	2
295	A Network Reliability Approach to Optimal Decomposition of Design Problems. Journal of Mechanical Design, Transactions of the ASME, 1995, 117, 433-440.	2.9	27
296	Optimal Design of Mechanical Engineering Systems. Journal of Vibration and Acoustics, Transactions of the ASME, 1995, 117, 55-62.	1.6	9
297	Detection of degenerate normal vectors on parametric surfaces: Tangent cone approach. Computer Aided Geometric Design, 1995, 12, 321-327.	1.2	6
298	Tangent, normal, and visibility cones on Bézier surfaces. Computer Aided Geometric Design, 1995, 12, 305-320.	1.2	26
299	CONTROLLING THE SEARCH FOR A COMPROMISE SOLUTION IN MULTI-OBJECTIVE OPTIMIZATION. Engineering Optimization, 1995, 25, 65-81.	2.6	12
300	Discrete Optimal Design Formulations With Application to Gear Train Design. Journal of Mechanical Design, Transactions of the ASME, 1995, 117, 419-424.	2.9	38
301	Infeasibility and Non-Optimality Tests for Solution Space Reduction in Discrete Optimal Design. Journal of Mechanical Design, Transactions of the ASME, 1995, 117, 425-432.	2.9	12
302	Optimal Model-Based Decomposition of Powertrain System Design. Journal of Mechanical Design, Transactions of the ASME, 1995, 117, 499-505.	2.9	57
303	Global and Discrete Constraint Activity. Journal of Mechanical Design, Transactions of the ASME, 1994, 116, 745-748.	2.9	6
304	Structural Configuration Examples of an Integrated Optimal Design Process. Journal of Mechanical Design, Transactions of the ASME, 1994, 116, 997-1004.	2.9	25
305	Conversion of spatial-enumeration scheme into constructive solid geometry. CAD Computer Aided Design, 1994, 26, 302-314.	2.7	2
306	Remarks on Sufficiency of Constraint-Bound Solutions in Optimal Design. Journal of Mechanical Design, Transactions of the ASME, 1993, 115, 374-379.	2.9	0

#	Article	IF	CITATIONS
307	A General Framework for Decomposition Analysis in Optimal Design. , 1993, , .		15
308	Implementation of Decomposition Analysis in Optimal Design. , 1993, , .		7
309	A note on automated detection of mobility of skeletal structures. Computers and Structures, 1992, 45, 197-207.	4.4	6
310	Further advances in the Integrated Structural Optimization System (ISOS). , 1992, , .		1
311	Computational Implementation and Tests of a Sequential Linearization Algorithm for Mixed-Discrete Nonlinear Design Optimization. Journal of Mechanical Design, Transactions of the ASME, 1991, 113, 335-345.	2.9	39
312	PRIMA: A Production-Based Implicit Elimination System for Monotonicity Analysis of Optimal Design Models. Journal of Mechanical Design, Transactions of the ASME, 1991, 113, 408-415.	2.9	2
313	Integrated Topology and Shape Optimization in Structural Designâ^—. Mechanics Based Design of Structures and Machines, 1991, 19, 551-587.	0.6	66
314	A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems. Journal of Mechanical Design, Transactions of the ASME, 1991, 113, 325-334.	2.9	77
315	Solution of mixed-discrete structural optimization problems with a new sequential linearization algorithm. Computers and Structures, 1990, 37, 451-461.	4.4	65
316	An Integrated Environment for Structural Configuration Design. Journal of Engineering Design, 1990, 1, 73-96.	2.3	58
317	Design and Implementation of a Prototype †Intelligent' CAD System. Journal of Mechanisms, Transmissions, and Automation in Design, 1989, 111, 252-258.	0.2	24
318	CODIFICATION OF SEMI-HEURISTIC GLOBAL PROCESSING OF OPTIMAL DESIGN MODELS. Engineering Optimization, 1988, 13, 235-253.	2.6	4
319	An Interior Linear Programming Algorithm Using Local and Global Knowledge. Journal of Mechanisms, Transmissions, and Automation in Design, 1988, 110, 58-64.	0.2	2
320	A Combined Local-Global Active Set Strategy for Nonlinear Design Optimization. Journal of Mechanisms, Transmissions, and Automation in Design, 1988, 110, 464-471.	0.2	3
321	Knowledge-Based Systems in Optimal Design. , 1987, , 759-804.		3
322	A Production System for Use of Global Optimization Knowledge. Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107, 277-284.	0.2	37
323	Programming Optimal Suggestions in the Design Concept Phase: Application to the Boothroyd Assembly Charts. Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107, 285-291.	0.2	10
324	A CONTRIBUTION TO THE OPTIMAL DESIGN OF RIDE-RINGS FOR INDUSTRIAL ROTARY KILNS. Engineering Optimization, 1985, 8, 207-221.	2.6	2

#	Article	IF	CITATIONS
325	Efficient Computation of Band Saw Blade Stresses. Journal of Mechanisms, Transmissions, and Automation in Design, 1984, 106, 394-400.	0.2	1
326	A Case for a Knowledge-Based Active Set Strategy. Journal of Mechanisms, Transmissions, and Automation in Design, 1984, 106, 77-81.	0.2	6
327	An Automated Procedure for Local Monotonicity Analysis. Journal of Mechanisms, Transmissions, and Automation in Design, 1984, 106, 82-89.	0.2	13
328	Design of an Optimal Grid for Finite Element Methods. Journal of Structural Mechanics, 1983, 11, 215-230.	0.6	21
329	QUALITATIVE MONOTONICITY ANALYSIS OF A PROBLEM INVOLVING DIFFERENTIAL EQUATIONS. Engineering Optimization, 1983, 6, 117-128.	2.6	1
330	Notes on the Operational Utility of Monotonicity in Optimization. Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105, 174-180.	0.2	12
331	Monotonicity Analysis in Optimum Design of Marine Risers. Journal of Mechanical Design, 1982, 104, 849-854.	0.1	1
332	Monotonicity in Goal and Geometric Programming. Journal of Mechanical Design, 1982, 104, 108-113.	0.1	5
333	Regional Monotonicity in Optimum Design. Journal of Mechanical Design, 1980, 102, 497-500.	0.1	9
334	Global Non-Iterative Design Optimization Using Monotonicity Analysis. Journal of Mechanical Design, 1979, 101, 645-649.	0.1	21
335	Antenna optimization using sequential quadratic programming (SQP) algorithms. , 0, , .		2
336	Selection Families of Optimal Engine Designs Using Nonlinear Programming and Parametric Sensitivity Analysis. , 0, , .		5
337	Optimization of patch antennas on ferrite substrate using the finite element methods. , 0, , .		2
338	Design of heat-activated reversible integral attachments for product-embedded disassembly. , 0, , .		4
339	Propagation of Uncertainty in Optimal Design of Multilevel Systems: Piston-Ring/Cylinder-Liner Case Study. , 0, , .		12
340	An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions. , 0, , .		6
341	A Dual-Use Enterprise Context for Vehicle Design and Technology Valuation. , 0, , .		3
342	Design Optimization and Reliability Estimation with Incomplete Uncertainty Information. , 0, , .		4

20

#	Article	IF	CITATIONS
343	Software Integration for Simulation-Based Analysis and Robust Design Automation of HMMWV Rollover Behavior. , 0, , .		5
344	Design Optimization of Motor/Generator Full-load Characteristics in Two-mode Hybrid Vehicles. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 0, 2, 389-396.	0.3	6
345	Simultaneous Topology and Material Microstructure Design. , 0, , .		5