Bridget K Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3654652/publications.pdf

Version: 2024-02-01

58 papers

4,414 citations

168829 31 h-index 58 g-index

63 all docs 63
docs citations

63 times ranked

8580 citing authors

#	Article	IF	CITATIONS
1	Phenotypic Screening for Small Molecules that Protect \hat{l}^2 -Cells from Glucolipotoxicity. ACS Chemical Biology, 2022, , .	1.6	4
2	Small-molecule discovery in the pancreatic beta cell. Current Opinion in Chemical Biology, 2022, 68, 102150.	2.8	3
3	Nuisance compounds in cellular assays. Cell Chemical Biology, 2021, 28, 356-370.	2.5	37
4	The Use of Informer Sets in Screening: Perspectives on an Efficient Strategy to Identify New Probes. SLAS Discovery, 2021, 26, 855-861.	1.4	8
5	From type 1 diabetes biology to therapy: The Human Islet Research Network. Molecular Metabolism, 2021, , 101283.	3.0	1
6	Addressing Compound Reactivity and Aggregation Assay Interferences: Case Studies of Biochemical High-Throughput Screening Campaigns Benefiting from the National Institutes of Health Assay Guidance Manual Guidelines. SLAS Discovery, 2021, 26, 1280-1290.	1.4	6
7	Harnessing reaction-based probes to preferentially target pancreatic \hat{l}^2 -cells and \hat{l}^2 -like cells. Life Science Alliance, 2021, 4, e202000840.	1.3	10
8	Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Science Advances, 2021, 7, eabh 3794.	4.7	16
9	A 3D culture platform enables development of zinc-binding prodrugs for targeted proliferation of \hat{l}^2 cells. Science Advances, 2020, 6, .	4.7	22
10	Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nature Communications, 2020, 11, 4043.	5 . 8	31
11	Native Zinc Catalyzes Selective and Traceless Release of Small Molecules in \hat{I}^2 -Cells. Journal of the American Chemical Society, 2020, 142, 6477-6482.	6.6	20
12	Substrate-selective inhibitors that reprogram the activity of insulin-degrading enzyme. Nature Chemical Biology, 2019, 15, 565-574.	3.9	36
13	A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell, 2019, 177, 1067-1079.e19.	13.5	133
14	When Small Molecules Are Like Real Estate: It's All about Location, Location, Location. Cell Chemical Biology, 2018, 25, 1169-1170.	2.5	2
15	The immunoproteasome is induced by cytokines and regulates apoptosis in human islets. Journal of Endocrinology, 2017, 233, 369-379.	1.2	26
16	Isoform-selective inhibitor of histone deacetylase 3 (HDAC3) limits pancreatic islet infiltration and protects female nonobese diabetic mice from diabetes. Journal of Biological Chemistry, 2017, 292, 17598-17608.	1.6	43
17	Real-Time Biological Annotation of Synthetic Compounds. Journal of the American Chemical Society, 2016, 138, 8920-8927.	6.6	39
18	The Genetic Landscape of Î ² -Cell Proliferation: Toward a Road Map. Diabetes, 2016, 65, 1789-1790.	0.3	2

#	Article	IF	CITATIONS
19	Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nature Chemical Biology, 2016, 12, 109-116.	3.9	636
20	An Isochemogenic Set of Inhibitors To Define the Therapeutic Potential of Histone Deacetylases in β-Cell Protection. ACS Chemical Biology, 2016, 11, 363-374.	1.6	78
21	The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chemical Biology, 2016, 23, 3-9.	2.5	97
22	Inhibition of DYRK1A Stimulates Human β-Cell Proliferation. Diabetes, 2016, 65, 1660-1671.	0.3	157
23	The resurgence of phenotypic screening in drug discovery and development. Expert Opinion on Drug Discovery, 2016, 11, 121-125.	2.5	44
24	Kinase-Independent Small-Molecule Inhibition of JAK-STAT Signaling. Journal of the American Chemical Society, 2015, 137, 7929-7934.	6.6	29
25	High-Throughput Luminescent Reporter of Insulin Secretion for Discovering Regulators of Pancreatic Beta-Cell Function. Cell Metabolism, 2015, 21, 126-137.	7.2	97
26	Integrating phenotypic small-molecule profiling and human genetics: the next phase in drug discovery. Trends in Genetics, 2015, 31, 16-23.	2.9	16
27	HDAC Inhibitor-Mediated Beta-Cell Protection Against Cytokine-Induced Toxicity Is STAT1 Tyr701 Phosphorylation Independent. Journal of Interferon and Cytokine Research, 2015, 35, 63-70.	0.5	11
28	Quantitative-Proteomic Comparison of Alpha and Beta Cells to Uncover Novel Targets for Lineage Reprogramming. PLoS ONE, 2014, 9, e95194.	1.1	27
29	Evaluation of Compounds in Primary Human Islet Cell Culture. Current Protocols in Chemical Biology, 2014, 6, 157-168.	1.7	11
30	Automated Structure–Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles. Journal of Biomolecular Screening, 2014, 19, 738-748.	2.6	19
31	Connecting Small Molecules with Similar Assay Performance Profiles Leads to New Biological Hypotheses. Journal of Biomolecular Screening, 2014, 19, 771-781.	2.6	37
32	Targeting the pancreatic \hat{l}^2 -cell to treat diabetes. Nature Reviews Drug Discovery, 2014, 13, 278-289.	21.5	228
33	Inhibition of HDAC3 as a strategy for developing novel diabetes therapeutics. Epigenomics, 2014, 6, 209-214.	1.0	32
34	Target identification and mechanism of action in chemical biology and drug discovery. Nature Chemical Biology, 2013, 9, 232-240.	3.9	814
35	Small-Molecule Inhibitors of Cytokine-Mediated STAT1 Signal Transduction in β-Cells with Improved Aqueous Solubility. Journal of Medicinal Chemistry, 2013, 56, 4125-4129.	2.9	22
36	A Small-Molecule Inducer of PDX1 Expression Identified by High-Throughput Screening. Chemistry and Biology, 2013, 20, 1513-1522.	6.2	34

#	Article	IF	CITATIONS
37	Chemical Methods to Induce Beta-Cell Proliferation. International Journal of Endocrinology, 2012, 2012, 1-8.	0.6	20
38	Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15115-15120.	3.3	200
39	A Human Islet Cell Culture System for High-Throughput Screening. Journal of Biomolecular Screening, 2012, 17, 509-518.	2.6	54
40	Inhibition of Histone Deacetylase 3 Protects Beta Cells from Cytokine-Induced Apoptosis. Chemistry and Biology, 2012, 19, 669-673.	6.2	85
41	A Small-Molecule Probe of the Histone Methyltransferase G9a Induces Cellular Senescence in Pancreatic Adenocarcinoma. ACS Chemical Biology, 2012, 7, 1152-1157.	1.6	141
42	GW8510 Increases Insulin Expression in Pancreatic Alpha Cells through Activation of p53 Transcriptional Activity. PLoS ONE, 2012, 7, e28808.	1.1	14
43	Small Molecule-induced Beta-cell Regeneration from Alternate Cell Sources. Current Tissue Engineering, 2012, 1, 83-90.	0.2	1
44	Synthesis of a Novel Suppressor of \hat{l}^2 -Cell Apoptosis via Diversity-Oriented Synthesis. ACS Medicinal Chemistry Letters, 2011, 2, 698-702.	1.3	42
45	Low-fat worms on drugs. Nature Chemical Biology, 2011, 7, 194-195.	3.9	0
46	Cover Picture: The Binding of Fluorophores to Proteins Depends on the Cellular Environment (Angew. Chem. Int. Ed. 12/2011). Angewandte Chemie - International Edition, 2011, 50, 2649-2649.	7.2	1
47	Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6817-6822.	3.3	98
48	Grand Challenge Commentary: Chemical transdifferentiation and regenerative medicine. Nature Chemical Biology, 2010, 6, 877-879.	3.9	7
49	Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18787-18792.	3.3	302
50	Small-molecule inducers of insulin expression in pancreatic \hat{l}_{\pm} -cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15099-15104.	3.3	62
51	Small-Molecule Suppressors of Cytokine-Induced \hat{l}^2 -Cell Apoptosis. ACS Chemical Biology, 2010, 5, 729-734.	1.6	38
52	Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling. Current Opinion in Chemical Biology, 2009, 13, 539-548.	2.8	34
53	High-Throughput Real-Time PCR for Detection of Gene-Expression Levels. Methods in Molecular Biology, 2009, 486, 167-175.	0.4	3
54	Large-scale chemical dissection of mitochondrial function. Nature Biotechnology, 2008, 26, 343-351.	9.4	186

#	Article	IF	CITATIONS
55	Small-Molecule Fluorophores To Detect Cell-State Switching in the Context of High-Throughput Screening. Journal of the American Chemical Society, 2008, 130, 4208-4209.	6.6	51
56	Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4721-4726.	3.3	79
57	A one-bead, one-stock solution approach to chemical genetics: part 2. Chemistry and Biology, 2001, 8, 1183-1195.	6.2	101
58	A Ï,, Promoter Region Without Neuronal Specificity. Journal of Neurochemistry, 1996, 66, 2257-2263.	2.1	44