Cristiano Simone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3654373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel STK11 gene mutation (c.388dupC, p.Clu130Clyfsâ^—33) in a Peutz-Jeghers family and evidence of higher gastric cancer susceptibility associated with alterations in STK11 region aa 107-170. Genes and Diseases, 2022, 9, 288-291.	3.4	4
2	CD90 is regulated by notch1 and hallmarks a more aggressive intrahepatic cholangiocarcinoma phenotype. Journal of Experimental and Clinical Cancer Research, 2022, 41, 65.	8.6	7
3	Identification and Somatic Characterization of the Germline PTEN Promoter Variant rs34149102 in a Family with Gastrointestinal and Breast Tumors. Genes, 2022, 13, 644.	2.4	Ο
4	ldentifying novel SMYD3 interactors on the trail of cancer hallmarks. Computational and Structural Biotechnology Journal, 2022, 20, 1860-1875.	4.1	6
5	Functional evidence of <scp>mTORβ</scp> splice variant involvement in the pathogenesis of congenital heart defects. Clinical Genetics, 2021, 99, 425-429.	2.0	1
6	Discovery of an Allosteric Ligand Binding Site in SMYD3 Lysine Methyltransferase. ChemBioChem, 2021, 22, 1597-1608.	2.6	8
7	APC Splicing Mutations Leading to In-Frame Exon 12 or Exon 13 Skipping Are Rare Events in FAP Pathogenesis and Define the Clinical Outcome. Genes, 2021, 12, 353.	2.4	2
8	Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death and Disease, 2021, 12, 316.	6.3	11
9	From Genetics to Histomolecular Characterization: An Insight into Colorectal Carcinogenesis in Lynch Syndrome. International Journal of Molecular Sciences, 2021, 22, 6767.	4.1	12
10	Correspondence on "Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities,―by Carmignac et al Genetics in Medicine, 2021, 23, 2223-2224.	2.4	1
11	Spectrum of Germline Pathogenic Variants in BRCA1/2 Genes in the Apulian Southern Italy Population: Geographic Distribution and Evidence for Targeted Genetic Testing. Cancers, 2021, 13, 4714.	3.7	3
12	Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers, 2021, 13, 4427.	3.7	7
13	SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways. Cancers, 2020, 12, 142.	3.7	44
14	Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. IScience, 2020, 23, 101604.	4.1	14
15	Gastric polyposis and desmoid tumours as a new familial adenomatous polyposis clinical variant associated with APC mutation at the extreme 3′-end. Journal of Medical Genetics, 2020, 57, 356-360.	3.2	12
16	Germline pathogenic variant in <i>PIK3CA</i> leading to symmetrical overgrowth with marked macrocephaly and mild global developmental delay. Molecular Genetics & Genomic Medicine, 2019, 7, e845.	1.2	11
17	FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response. Cells, 2019, 8, 1110.	4.1	131
18	FOXO3 on the Road to Longevity: Lessons From SNPs and Chromatin Hubs. Computational and Structural Biotechnology Journal, 2019, 17, 737-745.	4.1	43

CRISTIANO SIMONE

#	Article	IF	CITATIONS
19	Chasing the FOXO3: Insights into Its New Mitochondrial Lair in Colorectal Cancer Landscape. Cancers, 2019, 11, 414.	3.7	19
20	Characterization of a rare variant (c.2635-2A>G) of the <i>MSH2</i> gene in a family with Lynch syndrome. International Journal of Biological Markers, 2018, 33, 534-539.	1.8	6
21	Uncoupling FoxO3A mitochondrial and nuclear functions in cancer cells undergoing metabolic stress and chemotherapy. Cell Death and Disease, 2018, 9, 231.	6.3	33
22	In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics, 2018, 19, 77-91.	1.4	65
23	Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging, 2018, 10, 3957-3985.	3.1	133
24	The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. Nucleic Acids Research, 2018, 46, 5587-5600.	14.5	54
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
26	SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1. Oncotarget, 2016, 7, 75023-75037.	1.8	39
27	Clinical and Functional Characterization of a Novel Mutation in Lamin A/C Gene in a Multigenerational Family with Arrhythmogenic Cardiac Laminopathy. PLoS ONE, 2015, 10, e0121723.	2.5	43
28	Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS) Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors. PLoS ONE, 2015, 10, e0123092.	2.5	72
29	A SMYD3 Smallâ€Molecule Inhibitor Impairing Cancer Cell Growth. Journal of Cellular Physiology, 2015, 230, 2447-2460.	4.1	95
30	Metabolomic profiling for the identification of novel diagnostic markers in prostate cancer. Expert Review of Molecular Diagnostics, 2015, 15, 1211-1224.	3.1	57
31	Loss of STK11 expression is an early event in prostate carcinogenesis and predicts therapeutic response to targeted therapy against MAPK/p38. Autophagy, 2015, 11, 2102-2113.	9.1	27
32	Characterization of the rs2802292 SNP identifies FOXO3Aas a modifier locus predicting cancer risk in patients with PJS and PHTS hamartomatous polyposis syndromes. BMC Cancer, 2014, 14, 661.	2.6	11
33	Targeted therapy against chemoresistant colorectal cancers: Inhibition of p38î± modulates the effect of cisplatin in vitro and in vivo through the tumor suppressor FoxO3A. Cancer Letters, 2014, 344, 110-118.	7.2	45
34	A rare MSH2 mutation causes defective binding to hMSH6, normal hMSH2 staining, and loss of hMSH6 at advanced cancer stage. Human Pathology, 2014, 45, 2162-2167.	2.0	6
35	p38α MAPK pathway: A key factor in colorectal cancer therapy and chemoresistance. World Journal of Gastroenterology, 2014, 20, 9744.	3.3	181
36	A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cellular and Molecular Life Sciences, 2013, 70, 2015-2029.	5.4	85

CRISTIANO SIMONE

#	Article	IF	CITATIONS
37	Sorafenib inhibits p38α activity in colorectal cancer cells and synergizes with the DFG-in inhibitor SB202190 to increase apoptotic response. Cancer Biology and Therapy, 2012, 13, 1471-1481.	3.4	22
38	Blocking p38/ERK crosstalk affects colorectal cancer growth by inducing apoptosis in vitro and in preclinical mouse models. Cancer Letters, 2012, 324, 98-108.	7.2	41
39	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
40	Special Agents Hunting Down Women Silent Killer: The Emerging Role of the p38 <i>α</i> Kinase. Journal of Oncology, 2012, 2012, 1-7.	1.3	6
41	Updates from the Intestinal Front Line: Autophagic Weapons against Inflammation and Cancer. Cells, 2012, 1, 535-557.	4.1	10
42	Physical and Functional HAT/HDAC Interplay Regulates Protein Acetylation Balance. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	275
43	p38α Is Required for Ovarian Cancer Cell Metabolism and Survival. International Journal of Gynecological Cancer, 2010, 20, 203-211.	2.5	34
44	The AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle, 2010, 9, 1091-1096.	2.6	154
45	Chapter 15 Signal-Dependent Control of Autophagy-Related Gene Expression. Methods in Enzymology, 2009, 453, 305-324.	1.0	4
46	p38α blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1α- to FoxO-dependent transcription. Cell Death and Differentiation, 2009, 16, 1203-1214.	11.2	111
47	Inhibition of p38α unveils an AMPK-FoxO3A axis linking autophagy to cancer-specific metabolism. Autophagy, 2009, 5, 1030-1033.	9.1	72
48	Cdk9â€55: A new player in muscle regeneration. Journal of Cellular Physiology, 2008, 216, 576-582.	4.1	18
49	Signal-dependent regulation of gene expression as a target for cancer treatment: Inhibiting p38α in colorectal tumors. Cancer Letters, 2008, 265, 16-26.	7.2	39
50	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
51	Signal-Dependent Control of Autophagy and Cell Death in Colorectal Cancer Cell: The Role of the p38 Pathway. Autophagy, 2007, 3, 468-471.	9.1	41
52	Novel splice isoforms of STRADα differentially affect LKB1 activity, complex assembly and subcellular localization Cancer Biology and Therapy, 2007, 6, 1627-1631.	3.4	16
53	Functional Interdependence at the Chromatin Level between the MKK6/p38 and IGF1/PI3K/AKT Pathways during Muscle Differentiation. Molecular Cell, 2007, 28, 200-213.	9.7	174
54	Porous silicon surfaces – A candidate substrate for reverse protein arrays in cancer biomarker detection. Electrophoresis, 2007, 28, 4407-4415.	2.4	32

CRISTIANO SIMONE

#	Article	IF	CITATIONS
55	Abrogation of signal-dependent activation of the cdk9/cyclin T2a complex in human RD rhabdomyosarcoma cells. Cell Death and Differentiation, 2007, 14, 192-195.	11.2	24
56	A novel cell type-specific role of p38α in the control of autophagy and cell death in colorectal cancer cells. Cell Death and Differentiation, 2007, 14, 693-702.	11.2	130
57	pRb: master of differentiation. Coupling irreversible cell cycle withdrawal with induction of muscle-specific transcription. Oncogene, 2006, 25, 5244-5249.	5.9	97
58	Identification of murine cdk10: Association with Ets2 transcription factor and effects on the cell cycle. Journal of Cellular Biochemistry, 2006, 99, 978-985.	2.6	23
59	SWI/SNF: The crossroads where extracellular signaling pathways meet chromatin. Journal of Cellular Physiology, 2006, 207, 309-314.	4.1	87
60	MyoD recruits the cdk9/cyclin T2 complex on Myogenic-genes regulatory regions. Journal of Cellular Physiology, 2006, 206, 807-813.	4.1	51
61	A homozygous frameshift mutation in theESCO2 gene: Evidence of intertissue and interindividual variation in Nmd efficiency. Journal of Cellular Physiology, 2006, 209, 67-73.	4.1	48
62	Tumor-specific hyperactive low-molecular-weight cyclin E isoform detection and characterization in non-metastatic colorectal tumors. Cancer Biology and Therapy, 2006, 5, 198-203.	3.4	26
63	Differentiation-Induced Radioresistance in Muscle Cells. Molecular and Cellular Biology, 2004, 24, 6350-6361.	2.3	66
64	p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nature Genetics, 2004, 36, 738-743.	21.4	364
65	Deacetylase recruitment by the C/H3 domain of the acetyltransferase p300. Oncogene, 2004, 23, 2177-2187.	5.9	33
66	Deacetylase Inhibitors Increase Muscle Cell Size by Promoting Myoblast Recruitment and Fusion through Induction of Follistatin. Developmental Cell, 2004, 6, 673-684.	7.0	214
67	Cyclin E and chromosome instability in colorectal cancer cell lines. Journal of Clinical Pathology, 2002, 55, 200-203.	1.9	13
68	Activation of MyoD-dependent transcription by cdk9/cyclin T2. Oncogene, 2002, 21, 4137-4148.	5.9	106
69	Physical interaction between pRb and cdk9/cyclinT2 complex. Oncogene, 2002, 21, 4158-4165.	5.9	66
70	New insight in cdk9 function: from Tat to MyoD. Frontiers in Bioscience - Landmark, 2001, 6, d1073.	3.0	13
71	Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. SSRN Electronic Journal, 0, , .	0.4	0