Philippe Legrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/365356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Advances in Nutrition, 2021, 12, 2085-2098.	6.4	14
2	Interactive effects of maternal and weaning high linoleic acid intake on hepatic lipid metabolism, oxylipins profile and hepatic steatosis in offspring. Journal of Nutritional Biochemistry, 2020, 75, 108241.	4.2	18
3	Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats. Nutrients, 2020, 12, 3451.	4.1	5
4	May omega-3 fatty acid dietary supplementation help reduce severe complications in Covid-19 patients?. Biochimie, 2020, 179, 275-280.	2.6	93
5	Chemical Synthesis and Isolation ofTransâ€Palmitoleic Acid (Trans 16:1 nâ€7) Suitable for Nutritional Studies. European Journal of Lipid Science and Technology, 2020, 122, 1900409.	1.5	1
6	Fatty Acid Desaturase 3 (FADS3) Is a Specific â^†13-Desaturase of Ruminant <i>trans</i> -Vaccenic Acid. Lifestyle Genomics, 2019, 12, 18-24.	1.7	3
7	The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family. Biochimie, 2019, 159, 36-48.	2.6	106
8	Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. International Journal of Obesity, 2019, 43, 2381-2393.	3.4	47
9	Comparative effects of dietary n-3 docosapentaenoic acid (DPA), DHA and EPA on plasma lipid parameters, oxidative status and fatty acid tissue composition. Journal of Nutritional Biochemistry, 2019, 63, 186-196.	4.2	37
10	Conversion of dietary trans-vaccenic acid to trans11,cis13-conjugated linoleic acid in the rat lactating mammary gland by Fatty Acid Desaturase 3-catalyzed methyl-end Δ13-desaturation. Biochemical and Biophysical Research Communications, 2018, 505, 385-391.	2.1	12
11	Impact of n-3 Docosapentaenoic Acid Supplementation on Fatty Acid Composition in Rat Differs Depending upon Tissues and Is Influenced by the Presence of Dairy Lipids in the Diet. Journal of Agricultural and Food Chemistry, 2018, 66, 9976-9988.	5.2	10
12	Maternal omega-3 PUFA supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L116-L132.	2.9	21
13	Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats. Frontiers in Nutrition, 2018, 5, 42.	3.7	12
14	Dietary caprylic acid and ghrelin O-acyltransferase activity to modulate octanoylated ghrelin functions: What is new in this nutritional field?. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 135, 121-127.	2.2	19
15	Acides gras saturés et acylation des protéinesÂ: des aspects fonctionnels à l'approche nutritionnelle. Cahiers De Nutrition Et De Dietetique, 2016, 51, 296-303.	0.3	0
16	Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation. Biochimie, 2016, 120, 40-48.	2.6	52
17	Influence of the cis-9, cis-12 and cis-15 double bond position in octadecenoic acid (18:1) isomers on the rat FADS2-catalyzed I"6-desaturation. Chemistry and Physics of Lipids, 2015, 187, 10-19.	3.2	8
18	Dietary linoleic acid requirements in the presence of α-linolenic acid are lower than the historical 2Â% of energy intake value, study in rats. British Journal of Nutrition, 2015, 113, 1056-1068.	2.3	19

PHILIPPE LEGRAND

#	Article	IF	CITATIONS
19	Specific roles of saturated fatty acids: Beyond epidemiological data. European Journal of Lipid Science and Technology, 2015, 117, 1489-1499.	1.5	27
20	Excessive dietary linoleic acid induces proinflammatory markers in rats. Journal of Nutritional Biochemistry, 2015, 26, 1434-1441.	4.2	37
21	Beneficial impact of a mix of dairy fat with rapeseed oil on n-6 and n-3 PUFA metabolism in the rat: A small enrichment in dietary alpha-linolenic acid greatly increases its conversion to DHA in the liver. European Journal of Lipid Science and Technology, 2015, 117, 281-290.	1.5	12
22	Linoleic acid: Between doubts and certainties. Biochimie, 2014, 96, 14-21.	2.6	138
23	Nouvelle approche pour les recommandations nutritionnelles en lipides. Oleagineux Corps Gras Lipides, 2013, 20, 75-78.	0.2	3
24	Myristic Acid Increases Dihydroceramide Δ4â€Đesaturase 1 (DES1) Activity in Cultured Rat Hepatocytes. Lipids, 2012, 47, 117-128.	1.7	13
25	Physical and chemical modulation of lipid rafts by a dietary n-3 polyunsaturated fatty acid increases ethanol-induced oxidative stress. Free Radical Biology and Medicine, 2011, 51, 2018-2030.	2.9	20
26	Update of French Nutritional Recommendations for Fatty Acids. World Review of Nutrition and Dietetics, 2011, 102, 137-143.	0.3	26
27	The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010?. American Journal of Clinical Nutrition, 2011, 93, 684-688.	4.7	407
28	The Consumption of Food Products from Linseedâ€Fed Animals Maintains Erythrocyte Omegaâ€3 Fatty Acids in Obese Humans. Lipids, 2010, 45, 11-19.	1.7	46
29	The Complex and Important Cellular and Metabolic Functions of Saturated Fatty Acids. Lipids, 2010, 45, 941-946.	1.7	90
30	Short Chain Saturated Fatty Acids Decrease Circulating Cholesterol and Increase Tissue PUFA Content in the Rat. Lipids, 2010, 45, 975-986.	1.7	32
31	N-Myristoylation targets dihydroceramide Δ4-desaturase 1 to mitochondria: Partial involvement in the apoptotic effect of myristic acid. Biochimie, 2009, 91, 1411-1419.	2.6	35
32	Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18, 436-440.	2.6	128
33	Saturated fatty acids: simple molecular structures with complex cellular functions. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 752-758.	2.5	62
34	Myristic acid increases the activity of dihydroceramide Δ4-desaturase 1 through its N-terminal myristoylation. Biochimie, 2007, 89, 1553-1561.	2.6	46
35	Temporal changes in dietary fats: Role of nâ^'6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Progress in Lipid Research, 2006, 45, 203-236.	11.6	389
36	ldentification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases. Molecular and Cellular Biochemistry, 2006, 286, 161-170.	3.1	24

PHILIPPE LEGRAND

#	Article	IF	CITATIONS
37	Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat. Reproduction, Nutrition, Development, 2005, 45, 599-612.	1.9	67
38	Myristic acid increases Δ6-desaturase activity in cultured rat hepatocytes. Reproduction, Nutrition, Development, 2004, 44, 131-140.	1.9	55
39	Conversion of hexadecanoic acid to hexadecenoic acid by rat Δ6-desaturase. Journal of Lipid Research, 2003, 44, 450-454.	4.2	30
40	Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation. Reproduction, Nutrition, Development, 2003, 43, 419-430.	1.9	26
41	Effects of Introducing Linseed in Livestock Diet on Blood Fatty Acid Composition of Consumers of Animal Products. Annals of Nutrition and Metabolism, 2002, 46, 182-191.	1.9	101
42	Lauric acid is desaturated to 12â^¶1nâ^'3 by hepatocytes and rat liver homogenates. Lipids, 2002, 37, 569-572.	1.7	20
43	Exogenous myristic acid acylates proteins in cultured rat hepatocytes. Journal of Nutritional Biochemistry, 2002, 13, 66-74.	4.2	27
44	Myristic acid, unlike palmitic acid, is rapidly metabolized in cultured rat hepatocytes. Journal of Nutritional Biochemistry, 2000, 11, 198-207.	4.2	58
45	Inhibiting Δ9-Desaturase Activity Impairs Triacylglycerol Secretion in Cultured Chicken Hepatocytes. Journal of Nutrition, 1997, 127, 249-256.	2.9	52
46	Stearoyl-CoA desaturase activity in primary culture of chicken hepatocytes. influence of insulin, glucocorticoid, fatty acids and cordycepin. International Journal of Biochemistry & Cell Biology, 1994, 26, 777-785.	0.5	23