Yansheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3653289/publications.pdf

Version: 2024-02-01

57	7,262 citations	172457	149698
papers	citations	h-index	g-index
73	73	73	12533
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell, 2016, 165, 535-550.	28.9	2,216
2	Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma. Cell, 2019, 179, 561-577.e22.	28.9	629
3	Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nature Communications, 2017, 8, 291.	12.8	423
4	A repository of assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data, 2014, 1, 140031.	5.3	370
5	Quantitative variability of 342 plasma proteins in a human twin population. Molecular Systems Biology, 2015, 11, 786.	7.2	300
6	Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nature Biotechnology, 2019, 37, 314-322.	17.5	254
7	Protein kinase D at the Golgi controls NLRP3 inflammasome activation. Journal of Experimental Medicine, 2017, 214, 2671-2693.	8.5	197
8	Quantitative measurements of <i><scp>N</scp></i> â€linked glycoproteins in human plasma by <scp>SWATH</scp> â€ <scp>MS</scp> . Proteomics, 2013, 13, 1247-1256.	2.2	190
9	Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nature Methods, 2017, 14, 921-927.	19.0	189
10	Using dataâ€independent, highâ€resolution mass spectrometry in protein biomarker research: Perspectives and clinical applications. Proteomics - Clinical Applications, 2015, 9, 307-321.	1.6	182
11	TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nature Methods, 2016, 13, 777-783.	19.0	173
12	Glycoproteomic Analysis of Prostate Cancer Tissues by SWATH Mass Spectrometry Discovers N-acylethanolamine Acid Amidase and Protein Tyrosine Kinase 7 as Signatures for Tumor Aggressiveness. Molecular and Cellular Proteomics, 2014, 13, 1753-1768.	3.8	165
13	A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability. Cell, 2017, 169, 1105-1118.e15.	28.9	149
14	Impact of Alternative Splicing on the Human Proteome. Cell Reports, 2017, 20, 1229-1241.	6.4	145
15	Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS. Nature Biotechnology, 2017, 35, 781-788.	17.5	122
16	Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Review of Molecular Diagnostics, 2013, 13, 811-825.	3.1	117
17	Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. Nature Communications, 2017, 8, 1212.	12.8	112
18	Prediction of colorectal cancer diagnosis based onÂcirculating plasma proteins. EMBO Molecular Medicine, 2015, 7, 1166-1178.	6.9	80

#	Article	IF	CITATIONS
19	NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses. Nucleic Acids Research, 2020, 48, e83-e83.	14.5	77
20	Strategies to enable large-scale proteomics for reproducible research. Nature Communications, 2020, 11, 3793.	12.8	75
21	Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Reports, 2019, 28, 832-843.e7.	6.4	72
22	Integrative Proteomics and Tissue Microarray Profiling Indicate the Association between Overexpressed Serum Proteins and Non-Small Cell Lung Cancer. PLoS ONE, 2012, 7, e51748.	2.5	58
23	Global and Site-Specific Effect of Phosphorylation on Protein Turnover. Developmental Cell, 2021, 56, 111-124.e6.	7.0	57
24	A Global Screen for Assembly State Changes of the Mitotic Proteome by SEC-SWATH-MS. Cell Systems, 2020, 10, 133-155.e6.	6.2	57
25	Isoformâ€resolved correlation analysis between <scp>mRNA</scp> abundance regulation and protein level degradation. Molecular Systems Biology, 2020, 16, e9170.	7.2	42
26	A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer. Journal of Proteomics, 2011, 74, 528-538.	2.4	38
27	Speeding up tandem mass spectrometry based database searching by peptide and spectrum indexing. Rapid Communications in Mass Spectrometry, 2010, 24, 807-814.	1.5	37
28	Similarities and Differences of Blood N-Glycoproteins in Five Solid Carcinomas at Localized Clinical Stage Analyzed by SWATH-MS. Cell Reports, 2018, 23, 2819-2831.e5.	6.4	36
29	Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins. Nature Communications, 2019, 10, 2524.	12.8	35
30	Multiplexed Targeted Mass Spectrometry-Based Assays for the Quantification of N-Linked Glycosite-Containing Peptides in Serum. Analytical Chemistry, 2015, 87, 10830-10838.	6.5	32
31	Combining Rapid Data Independent Acquisition and CRISPR Gene Deletion for Studying Potential Protein Functions: A Case of HMGN1. Proteomics, 2019, 19, e1800438.	2.2	31
32	Quantitative Proteomics Reveal up-regulated Protein Expression of the SET Complex Associated with Hepatocellular Carcinoma. Journal of Proteome Research, 2012, 11, 871-885.	3.7	30
33	Assessing the Relationship Between Mass Window Width and Retention Time Scheduling on Protein Coverage for Data-Independent Acquisition. Journal of the American Society for Mass Spectrometry, 2019, 30, 1396-1405.	2.8	30
34	Shotgun and targeted proteomics reveal that pre-surgery serum levels of LRG1, SAA, and C4BP may refine prognosis of resected squamous cell lung cancer. Journal of Molecular Cell Biology, 2012, 4, 344-347.	3.3	28
35	Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity. Scientific Reports, 2016, 6, 24146.	3.3	28
36	The interdependence of transcript and protein abundance: new data–new complexities. Molecular Systems Biology, 2016, 12, 856.	7.2	26

#	Article	lF	Citations
37	SECAT: Quantifying Protein Complex Dynamics across Cell States by Network-Centric Analysis of SEC-SWATH-MS Profiles. Cell Systems, 2020, 11, 589-607.e8.	6.2	26
38	Germâ€free and microbiotaâ€associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes. Cellular Microbiology, 2020, 22, e13191.	2.1	26
39	Data-independent acquisition-based proteome and phosphoproteome profiling across six melanoma cell lines reveals determinants of proteotypes. Molecular Omics, 2021, 17, 413-425.	2.8	26
40	motifeR: An Integrated Web Software for Identification and Visualization of Protein Posttranslational Modification Motifs. Proteomics, 2019, 19, e1900245.	2.2	25
41	Selection of Features with Consistent Profiles Improves Relative Protein Quantification in Mass Spectrometry Experiments. Molecular and Cellular Proteomics, 2020, 19, 944-959.	3.8	25
42	BoxCarmax: A High-Selectivity Data-Independent Acquisition Mass Spectrometry Method for the Analysis of Protein Turnover and Complex Samples. Analytical Chemistry, 2021, 93, 3103-3111.	6.5	24
43	Proteomic mining in the dysplastic liver of WHV/câ€∢i>myc mice – insights and indicators for early hepatocarcinogenesis. FEBS Journal, 2010, 277, 4039-4053.	4.7	23
44	Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues. Proteomics, 2017, 17, 1600323.	2.2	22
45	Cross-compartment signal propagation in the mitotic exit network. ELife, 2021, 10, .	6.0	21
46	FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with \hat{l} ±-Klotho. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31800-31807.	7.1	18
47	A PKD-MFF signaling axis couples mitochondrial fission to mitotic progression. Cell Reports, 2021, 35, 109129.	6.4	15
48	Capillary zone electrophoresis-tandem mass spectrometry with ultraviolet photodissociation (213 nm) for large-scale top–down proteomics. Analytical Methods, 2019, 11, 2855-2861.	2.7	14
49	Systems pharmacology using mass spectrometry identifies critical response nodes in prostate cancer. Npj Systems Biology and Applications, 2018, 4, 26.	3.0	13
50	MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells. Cell Reports, 2021, 37, 110160.	6.4	12
51	A peptidoform based proteomic strategy for studying functions of postâ€translational modifications. Proteomics, 2022, 22, 2100316.	2.2	7
52	Deep Phosphoproteomic Measurements Pinpointing Drug Induced Protective Mechanisms in Neuronal Cells. Frontiers in Physiology, 2016, 7, 635.	2.8	6
53	Multi-in-One: Multiple-Proteases, One-Hour-Shot Strategy for Fast and High-Coverage Phosphoproteomic Investigation. Analytical Chemistry, 2020, 92, 8943-8951.	6.5	6
54	Developing a Bimolecular Affinity Purification Strategy to Isolate 26S Proteasome Holocomplexes for Complex-Centric Proteomic Analysis. Analytical Chemistry, 2021, 93, 13407-13413.	6. 5	5

YANSHENG LIU

#	Article	IF	CITATIONS
55	Statistical elimination of spectral features with large between-run variation enhances quantitative protein-level conclusions in experiments with data-independent spectral acquisition. BMC Bioinformatics, 2015, 16, .	2.6	1
56	Respective, Timeâ€dependent Phosphorylation Modules Shaping Phosphoproteome Abundance and Turnover. FASEB Journal, 2021, 35, .	0.5	0
57	Identification and Characterization of Epigenetic Regulators of Breast Cancer Metastasis to the Brain. FASEB Journal, 2021, 35, .	0.5	0