List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3653107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448, 938-942.	27.8	1,270
2	GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway Molecular and Cellular Biology, 1994, 14, 4135-4144.	2.3	641
3	A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 2020, 367, 1385-1390.	12.6	631
4	Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 1999, 33, 904-918.	2.5	609
5	Nutrient sensing and signaling in the yeast <i>Saccharomyces cerevisiae</i> . FEMS Microbiology Reviews, 2014, 38, 254-299.	8.6	534
6	The Transcriptional Response of Saccharomyces cerevisiae to Osmotic Shock. Journal of Biological Chemistry, 2000, 275, 8290-8300.	3.4	491
7	The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded byGPD1andGPD2have distinct roles in osmoadaptation and redox regulation. EMBO Journal, 1997, 16, 2179-2187.	7.8	469
8	Regulation of trehalose mobilization in fungi. Microbiological Reviews, 1984, 48, 42-59.	10.1	453
9	Trehalose synthase: guard to the gate of glycolysis in yeast?. Trends in Biochemical Sciences, 1995, 20, 3-10.	7.5	390
10	Parameters Affecting Ethyl Ester Production by <i>Saccharomyces cerevisiae</i> during Fermentation. Applied and Environmental Microbiology, 2008, 74, 454-461.	3.1	386
11	Flavor-active esters: Adding fruitiness to beer. Journal of Bioscience and Bioengineering, 2003, 96, 110-118.	2.2	369
12	Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology, 1999, 31, 1087-1104.	2.5	357
13	Signal transduction in yeast. Yeast, 1994, 10, 1753-1790.	1.7	353
14	Production and biological function of volatile esters in <i>Saccharomyces cerevisiae</i> . Microbial Biotechnology, 2010, 3, 165-177.	4.2	348
15	Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Research, 2002, 2, 183-201.	2.3	341
16	A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Molecular Microbiology, 1999, 32, 1002-1012.	2.5	339
17	The Arabidopsis Trehalose-6-P Synthase AtTPS1 Gene Is a Regulator of Glucose, Abscisic Acid, and Stress Signaling. Plant Physiology, 2004, 136, 3649-3659.	4.8	333
18	Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1 , Lg-ATF1 , and ATF2 Control the Formation of a Broad Range of Volatile Esters. Applied and Environmental Microbiology, 2003, 69, 5228-5237.	3.1	328

#	Article	IF	CITATIONS
19	Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genetics, 2006, 38, 197-202.	21.4	323
20	<i>GPD1</i> , Which Encodes Glycerol-3-Phosphate Dehydrogenase, Is Essential for Growth under Osmotic Stress in <i>Saccharomyces cerevisiae</i> , and Its Expression Is Regulated by the High-Osmolarity Glycerol Response Pathway. Molecular and Cellular Biology, 1994, 14, 4135-4144.	2.3	317
21	The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 40, 1391-1401.	2.5	306
22	Regulation of trehalose mobilization in fungi Microbiological Reviews, 1984, 48, 42-59.	10.1	283
23	Involvement of distinct G-proteins, Gpa2 and Ras, in glucose-and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO Journal, 1998, 17, 3326-3341.	7.8	282
24	Glucose-sensing mechanisms in eukaryotic cells. Trends in Biochemical Sciences, 2001, 26, 310-317.	7.5	278
25	Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 2013, 6, 89.	6.2	257
26	Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al ₂ O ₃ catalyst pellets during lignin-first fractionation. Green Chemistry, 2017, 19, 3313-3326.	9.0	251
27	Osmotic Stress-Induced Gene Expression in <i>Saccharomyces cerevisiae</i> Requires Msn1p and the Novel Nuclear Factor Hot1p. Molecular and Cellular Biology, 1999, 19, 5474-5485.	2.3	248
28	The Saccharomyces cerevisiae EHT1 and EEB1 Genes Encode Novel Enzymes with Medium-chain Fatty Acid Ethyl Ester Synthesis and Hydrolysis Capacity. Journal of Biological Chemistry, 2006, 281, 4446-4456.	3.4	244
29	Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology (United Kingdom), 1998, 144, 671-680.	1.8	242
30	Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in <i>Arabidopsis</i> and tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5891-5896.	7.1	228
31	Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Molecular Microbiology, 2000, 38, 348-358.	2.5	205
32	An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends in Plant Science, 2001, 6, 510-513.	8.8	204
33	Discrepancy in glucose and fructose utilisation during fermentation by wine yeast strains. FEMS Yeast Research, 2004, 4, 683-689.	2.3	204
34	Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology <i>inAvivo</i> and <i>inÂvitro</i> . New Phytologist, 2013, 200, 27-43.	7.3	194
35	Glucose and Sucrose Act as Agonist and Mannose as Antagonist Ligands of the G Protein-Coupled Receptor Gpr1 in the Yeast Saccharomyces cerevisiae. Molecular Cell, 2004, 16, 293-299.	9.7	190
36	Composition and Functional Analysis of the Saccharomyces cerevisiae Trehalose Synthase Complex. Journal of Biological Chemistry, 1998, 273, 33311-33319.	3.4	189

#	Article	IF	CITATIONS
37	The G Protein-coupled Receptor Gpr1 and the Gα Protein Gpa2 Act through the cAMP-Protein Kinase A Pathway to Induce Morphogenesis inCandida albicans. Molecular Biology of the Cell, 2005, 16, 1971-1986.	2.1	188
38	Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans The GenBank accession number for the sequence reported in this paper is AF043230 Microbiology (United Kingdom), 2001, 147, 1851-1862.	1.8	187
39	The <i>PDE1</i> -encoded Low-Affinity Phosphodiesterase in the Yeast <i>Saccharomyces cerevisiae</i> Has a Specific Function in Controlling Agonist-induced cAMP Signaling. Molecular Biology of the Cell, 1999, 10, 91-104.	2.1	183
40	A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta, 2007, 226, 1411-1421.	3.2	183
41	Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Research, 2012, 22, 975-984.	5.5	174
42	Combinatorial biosynthesis of sapogenins and saponins in <i>Saccharomyces cerevisiae</i> using a C-16α hydroxylase from <i>Bupleurum falcatum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1634-1639.	7.1	173
43	Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Molecular Microbiology, 1991, 5, 1301-1307.	2.5	172
44	Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 2003, 47, 1163-1181.	2.5	170
45	PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Molecular Microbiology, 2005, 55, 862-880.	2.5	170
46	The eukaryotic plasma membrane as a nutrient-sensing device. Trends in Biochemical Sciences, 2004, 29, 556-564.	7.5	165
47	A Selaginella lepidophyllaTrehalose-6-Phosphate Synthase Complements Growth and Stress-Tolerance Defects in a Yeasttps1Mutant1. Plant Physiology, 1999, 119, 1473-1482.	4.8	164
48	Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Applied and Environmental Microbiology, 1995, 61, 109-115.	3.1	162
49	The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Molecular Microbiology, 2001, 40, 1067-1083.	2.5	161
50	Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nature Communications, 2017, 8, 922.	12.8	161
51	Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Current Opinion in Biotechnology, 2015, 33, 228-259.	6.6	160
52	The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Current Genetics, 1993, 23, 281-289.	1.7	159
53	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
54	The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiology Reviews, 2019, 43, 193-222.	8.6	149

#	Article	IF	CITATIONS
55	Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2890-2895.	7.1	147
56	Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environmental Microbiology, 2017, 19, 878-893.	3.8	146
57	Looking beyond <i>Saccharomyces</i> : the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Research, 2015, 15, fov053.	2.3	145
58	The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 2003, 50, 911-929.	2.5	141
59	A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO Journal, 1999, 18, 5577-5591.	7.8	139
60	Aquaporin Expression Correlates with Freeze Tolerance in Baker's Yeast, and Overexpression Improves Freeze Tolerance in Industrial Strains. Applied and Environmental Microbiology, 2002, 68, 5981-5989.	3.1	138
61	Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Research, 2017, 17, .	2.3	135
62	Glucose and sucrose: hazardous fast-food for industrial yeast?. Trends in Biotechnology, 2004, 22, 531-537.	9.3	132
63	Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2009, 32, 1015-1032.	5.7	131
64	The RAS-adenylate cyclase pathway and cell cycle control inSaccharomyces cerevisiae. Antonie Van Leeuwenhoek, 1992, 62, 109-130.	1.7	130
65	Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 1993, 8, 927-943.	2.5	130
66	Sex and sugar in yeast: two distinct GPCR systems. EMBO Reports, 2001, 2, 574-579.	4.5	130
67	Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiology, 2018, 72, 55-66.	4.2	128
68	Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO Journal, 1995, 14, 1360-71.	7.8	128
69	Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Research, 2002, 2, 183-201.	2.3	125
70	Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae Molecular and Cellular Biology, 1988, 8, 3051-3057.	2.3	124
71	An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Research, 2014, 42, e44-e44.	14.5	124
72	Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. FEBS Journal, 1988, 172, 227-231.	0.2	123

#	Article	IF	CITATIONS
73	Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme and Microbial Technology, 2000, 26, 819-825.	3.2	122
74	Differential Requirement of the Yeast Sugar Kinases for Sugar Sensing in Establishing the Catabolite-Repressed State. FEBS Journal, 1996, 241, 633-643.	0.2	119
75	Activation State of the Ras2 Protein and Glucose-induced Signaling in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 46715-46722.	3.4	116
76	Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology (United Kingdom), 1999, 145, 715-727.	1.8	115
77	Why do microorganisms have aquaporins?. Trends in Microbiology, 2006, 14, 78-85.	7.7	115
78	Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Applied Microbiology and Biotechnology, 2008, 80, 1039-1051.	3.6	115
79	Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnology for Biofuels, 2019, 12, 20.	6.2	114
80	Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Molecular Microbiology, 1996, 20, 981-991.	2.5	111
81	The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology (United Kingdom), 1997, 143, 2627-2637.	1.8	107
82	Kelch-repeat proteins interacting with the GÂ protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13034-13039.	7.1	107
83	Regulation of trehalase activity by phosphorylation-dephosphorylation during developmental transitions in fungi. Experimental Mycology, 1988, 12, 1-12.	1.6	105
84	Trehalases and trehalose hydrolysis in fungi. FEMS Microbiology Letters, 2006, 154, 165-171.	1.8	105
85	Ammonium permease-based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast. Molecular Microbiology, 2006, 59, 1485-1505.	2.5	105
86	Disruption of the Candida albicans TPS2 Gene Encoding Trehalose-6-Phosphate Phosphatase Decreases Infectivity without Affecting Hypha Formation. Infection and Immunity, 2002, 70, 1772-1782.	2.2	104
87	Carbon source induced yeast-to-hypha transition in <i>Candida albicans</i> is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochemical Society Transactions, 2005, 33, 291-293.	3.4	104
88	Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains with reduced activity of cyclic AMP-dependent protein kinase Molecular and Cellular Biology, 1990, 10, 4518-4523.	2.3	102
89	Isolation and Characterization of Brewer's Yeast Variants with Improved Fermentation Performance under High-Gravity Conditions. Applied and Environmental Microbiology, 2007, 73, 815-824.	3.1	102
90	Structural analysis of the subunits of the trehaloseâ€6â€phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Molecular Microbiology, 1997, 24, 687-696.	2.5	101

#	Article	IF	CITATIONS
91	Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Molecular Microbiology, 2000, 35, 397-406.	2.5	101
92	The protein quality control system manages plant defence compound synthesis. Nature, 2013, 504, 148-152.	27.8	99
93	Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnology for Biofuels, 2013, 6, 120.	6.2	96
94	OSC2 and CYP716A14v2 Catalyze the Biosynthesis of Triterpenoids for the Cuticle of Aerial Organs of <i>Artemisia annua</i> . Plant Cell, 2015, 27, 286-301.	6.6	96
95	Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. Journal of General Microbiology, 1992, 138, 2035-2043.	2.3	93
96	ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant Molecular Biology, 2007, 63, 195-206.	3.9	93
97	Molecular mechanisms controlling the localisation of protein kinase A. Current Genetics, 2002, 41, 199-207.	1.7	92
98	Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12, 215-227.	2.3	91
99	Functioning and Evolutionary Significance of Nutrient Transceptors. Molecular Biology and Evolution, 2009, 26, 2407-2414.	8.9	89
100	Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast. PLoS Genetics, 2013, 9, e1003548.	3.5	88
101	A Short Regulatory Domain Restricts Glycerol Transport through Yeast Fps1p. Journal of Biological Chemistry, 2003, 278, 6337-6345.	3.4	87
102	Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology (United Kingdom), 1996, 142, 1775-1782.	1.8	86
103	Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. Biochemical Journal, 2002, 366, 63-71.	3.7	84
104	Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Research, 2012, 22, 1058-1077.	12.0	84
105	Gelatinisation temperature of starch, as influenced by high pressure. Carbohydrate Research, 1981, 93, 304-307.	2.3	83
106	Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnology for Biofuels, 2016, 9, 5.	6.2	83
107	Regulation of genes encoding subunits of the trehalose synthase complex inSaccharomyces cerevisiae: novel variations of STRE-mediated transcription control?. Molecular Genetics and Genomics, 1996, 252, 470-482.	2.4	82
108	Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Letters, 2000, 472, 159-165.	2.8	81

#	Article	IF	CITATIONS
109	Determinants of Freeze Tolerance in Microorganisms, Physiological Importance, and Biotechnological Applications. Advances in Applied Microbiology, 2003, 53, 129-176.	2.4	76
110	Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnology for Biofuels, 2017, 10, 216.	6.2	76
111	Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochemical Journal, 1999, 343, 621-626.	3.7	73
112	The alcohol acetyl transferase gene is a target of the cAMP/PKA and FGM nutrient-signalling pathways. FEMS Yeast Research, 2003, 4, 285-296.	2.3	72
113	Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nature Chemical Biology, 2009, 5, 45-52.	8.0	72
114	Impact of pitching rate on yeast fermentation performance and beer flavour. Applied Microbiology and Biotechnology, 2009, 82, 155-167.	3.6	70
115	Growth-related expression of ribosomal protein genes in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1993, 239, 196-204.	2.4	69
116	Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Microbiology (United Kingdom), 1999, 145, 703-714.	1.8	69
117	QTL Analysis of High Thermotolerance with Superior and Downgraded Parental Yeast Strains Reveals New Minor QTLs and Converges on Novel Causative Alleles Involved in RNA Processing. PLoS Genetics, 2013, 9, e1003693.	3.5	69
118	Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Applied Microbiology and Biotechnology, 2008, 77, 1083-1091.	3.6	68
119	Isolation and Characterization of a Freeze-Tolerant Diploid Derivative of an Industrial Baker's Yeast Strain and Its Use in Frozen Doughs. Applied and Environmental Microbiology, 2002, 68, 4780-4787.	3.1	67
120	Flavor-active esters: adding fruitiness to beer. Journal of Bioscience and Bioengineering, 2003, 96, 110-8.	2.2	67
121	Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Current Genetics, 1995, 27, 110-122.	1.7	66
122	Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Archives of Microbiology, 1984, 138, 64-67.	2.2	65
123	Structure–function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochemical Journal, 1999, 343, 159-168.	3.7	65
124	Multi-level response of the yeast genome to glucose. Genome Biology, 2003, 4, 233.	9.6	65
125	TheSaccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast, 2004, 21, 367-377.	1.7	65
126	Requirement of One Functional <i>RAS</i> Gene and Inability of an Oncogenic <i>ras</i> Variant to Mediate the Glucose-Induced Cyclic AMP Signal in the Yeast <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1988, 8, 3051-3057.	2.3	65

#	Article	IF	CITATIONS
127	From transporter to transceptor: Signaling from transporters provokes reâ€evaluation of complex trafficking and regulatory controls. BioEssays, 2011, 33, 870-879.	2.5	64
128	In Vivo Phosphorylation of Ser21 and Ser83 during Nutrient-induced Activation of the Yeast Protein Kinase A (PKA) Target Trehalase. Journal of Biological Chemistry, 2012, 287, 44130-44142.	3.4	64
129	Unraveling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa lanceolata. Molecular Plant, 2015, 8, 122-135.	8.3	63
130	Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast. MBio, 2017, 8, .	4.1	63
131	Glucose-induced activation of plasma membrane H+-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1136, 57-67.	4.1	61
132	Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. Microbiology (United Kingdom), 1991, 137, 341-349.	1.8	60
133	Activation of trehalase during growth induction by nitrogen sources in the yeastSaccharomyces cerevisiae depends on the free catalytic subunits of camp-dependent protein kinase, but not on functional ras proteins. Yeast, 1994, 10, 1049-1064.	1.7	59
134	Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cellular Signalling, 2012, 24, 1610-1618.	3.6	59
135	Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. Metabolic Engineering, 2013, 17, 68-81.	7.0	59
136	Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Applied Microbiology and Biotechnology, 2014, 98, 9483-9498.	3.6	59
137	Changes in the activity and properties of trehalase during early germination of yeast ascospores: Correlation with trehalose breakdown as studied by in vivo13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 3503-3507.	7.1	58
138	Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Molecular Microbiology, 2001, 39, 145-157.	2.5	58
139	<i>Saccharomyces cerevisiae</i> plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Research, 2010, 10, 134-149.	2.3	58
140	Regulation of the cAMP Level in the Yeast Saccharomyces cerevisiae: Intracellular pH and the Effect of Membrane Depolarizing Compounds. Microbiology (United Kingdom), 1987, 133, 2191-2196.	1.8	57
141	The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae. FEBS Journal, 1990, 193, 675-680.	0.2	57
142	Late Fermentation Expression ofFLO1inSaccharomyces Cerevisiae. Journal of the American Society of Brewing Chemists, 2001, 59, 69-76.	1.1	57
143	Assessing the potential of wild yeasts for bioethanol production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 39-48.	3.0	57
144	Glucose-Induced Hyperaccumulation of Cyclic AMP and Defective Glucose Repression in Yeast Strains with Reduced Activity of Cyclic AMP-Dependent Protein Kinase. Molecular and Cellular Biology, 1990, 10, 4518-4523.	2.3	57

#	Article	IF	CITATIONS
145	Cyclic AMP and the Stimulation of Trehalase Activity in the Yeast Saccharomyces cerevisiae by Carbon Sources, Nitrogen Sources and Inhibitors of Protein Synthesis. Microbiology (United Kingdom), 1985, 131, 3199-3209.	1.8	56
146	Rapid Evolution of Recombinant Saccharomyces cerevisiae for Xylose Fermentation through Formation of Extra-chromosomal Circular DNA. PLoS Genetics, 2015, 11, e1005010.	3.5	56
147	Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Molecular Microbiology, 2002, 43, 835-842.	2.5	55
148	Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnology for Biofuels, 2013, 6, 87.	6.2	55
149	Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochemical Journal, 2000, 350, 261-268.	3.7	54
150	Mutational analysis of putative phosphate- and proton-binding sites in the <i>Saccharomyces cerevisiae</i> Pho84 phosphate:H+ transceptor and its effect on signalling to the PKA and <i>PHO</i> pathways. Biochemical Journal, 2012, 445, 413-422.	3.7	54
151	Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. Biochemical Society Transactions, 2005, 33, 253-256.	3.4	53
152	Yeast 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Orthologs Pkh1–3 Differentially Regulate Phosphorylation of Protein Kinase A (PKA) and the Protein Kinase B (PKB)/S6K Ortholog Sch9. Journal of Biological Chemistry, 2011, 286, 22017-22027.	3.4	52
153	Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast <i>Saccharomyces cerevisiae</i> var. <i>boulardii</i> . Genome Research, 2019, 29, 1478-1494.	5.5	51
154	Trehalose metabolism and glucose sensing in plants. Biochemical Society Transactions, 2005, 33, 276-279.	3.4	50
155	Improved linkage analysis of Quantitative Trait Loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast. BMC Genomics, 2014, 15, 207.	2.8	50
156	The role of hexose transport and phosphorylation in cAMP signalling in the yeastSaccharomyces cerevisiae. FEMS Yeast Research, 2001, 1, 33-45.	2.3	49
157	Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2000, 53, 376-382.	3.6	48
158	Aquaporin-Mediated Improvement of Freeze Tolerance of <i>Saccharomyces cerevisiae</i> Is Restricted to Rapid Freezing Conditions. Applied and Environmental Microbiology, 2004, 70, 3377-3382.	3.1	48
159	Molecular Mechanisms Controlling Phosphate-Induced Downregulation of the Yeast Pho84 Phosphate Transporter. Biochemistry, 2009, 48, 4497-4505.	2.5	48
160	Possible involvement of a phosphatidylinositol-type signaling pathway in glucose-induced activation of plasma membrane H+-ATPase and cellular proton extrusion in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1223, 117-124.	4.1	47
161	Physiological and molecular analysis of the stress response of <i>Saccharomyces cerevisiae</i> imposed by strong inorganic acid with implication to industrial fermentations. Journal of Applied Microbiology, 2010, 109, 116-127.	3.1	47
162	Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates. Biotechnology for Biofuels, 2021, 14, 92.	6.2	47

#	Article	IF	CITATIONS
163	Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae. Microbial Cell, 2017, 4, 74-89.	3.2	47
164	Glucose-induced regulatory defects in the Saccharomyces cerevisiae byp1 growth initiation mutant and identification of MIG1 as a partial suppressor. Journal of Bacteriology, 1992, 174, 4183-4188.	2.2	46
165	Comparative analysis of CYP93E proteins for improved microbial synthesis of plant triterpenoids. Phytochemistry, 2014, 108, 47-56.	2.9	46
166	Transcript analysis of 1003 novel yeast genes using high-throughput northern hybridizations. EMBO Journal, 2001, 20, 3177-3186.	7.8	45
167	Feedback Inhibition on Cell Wall Integrity Signaling by Zds1 Involves Gsk3 Phosphorylation of a cAMP-dependent Protein Kinase Regulatory Subunit. Journal of Biological Chemistry, 2003, 278, 23460-23471.	3.4	45
168	Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. FEBS Journal, 1993, 217, 701-713.	0.2	44
169	Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation. Journal of Biological Chemistry, 2015, 290, 10430-10446.	3.4	44
170	Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metabolic Engineering, 2020, 59, 131-141.	7.0	44
171	The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H+-ATPase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1405, 147-154.	4.1	43
172	Structure‒function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochemical Journal, 1999, 343, 159.	3.7	43
173	Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. Current Genetics, 2004, 45, 83-89.	1.7	43
174	Cyclic AMP-Protein Kinase A and Snf1 Signaling Mechanisms Underlie the Superior Potency of Sucrose for Induction of Filamentation in Saccharomyces cerevisiae. Eukaryotic Cell, 2008, 7, 286-293.	3.4	43
175	Regulation of the cAMP Level in the Yeast Saccharomyces cerevisiae: the Glucose-induced cAMP Signal Is Not Mediated by a Transient Drop in the Intracellular pH. Microbiology (United Kingdom), 1987, 133, 2197-2205.	1.8	41
176	Absence of glucose-induced cAMP signaling in the Saccharomyces cerevisiae mutants cat1 and cat3 which are deficient in derepression of glucose-repressible proteins. Archives of Microbiology, 1990, 154, 199-205.	2.2	41
177	Regulation of Trehalose Metabolism and Its Relevance to cell Growth and Function. , 1996, , 395-420.		41
178	A mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level. Molecular Microbiology, 1999, 33, 363-376.	2.5	41
179	A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO Journal, 1991, 10, 2095-104.	7.8	41
180	Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1606, 83-93.	1.0	40

#	Article	IF	CITATIONS
181	Identification of Hexose Transporter-Like Sensor <i>HXS1</i> and Functional Hexose Transporter <i>HXT1</i> in the Methylotrophic Yeast <i>Hansenula polymorpha</i> . Eukaryotic Cell, 2008, 7, 735-746.	3.4	39
182	During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. , 1998, 14, 255-269.		38
183	Specific analogues uncouple transport, signalling, oligoâ€ubiquitination and endocytosis in the yeast <scp>G</scp> ap1 amino acid transceptor. Molecular Microbiology, 2014, 93, 213-233.	2.5	38
184	Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells. Frontiers in Pharmacology, 2018, 9, 191.	3.5	36
185	Deletion ofSFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeastSaccharomyces cerevisiae, causes G2 arrest. Yeast, 1999, 15, 1097-1109.	1.7	35
186	Reconstitution of ethanolic fermentation in permeabilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae. FEBS Journal, 2000, 267, 4566-4576.	0.2	35
187	Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. Biochemical Journal, 2001, 353, 157-162.	3.7	34
188	Combined Inactivation of the <i>Candida albicans GPR1</i> and <i>TPS2</i> Genes Results in Avirulence in a Mouse Model for Systemic Infection. Infection and Immunity, 2008, 76, 1686-1694.	2.2	34
189	Glucose-induced activation of the plasma membrane H+-ATPase in Fusarium oxysporum. Journal of General Microbiology, 1992, 138, 1579-1586.	2.3	33
190	Transcript analysis of 250 novel yeast genes from chromosome XIV. , 1999, 15, 329-350.		33
191	Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2. Applied Microbiology and Biotechnology, 2008, 78, 783-792.	3.6	33
192	Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. International Journal of Food Microbiology, 2000, 55, 187-192.	4.7	32
193	Phosphoinositides in yeast: genetically tractable signalling. FEMS Yeast Research, 2001, 1, 9-13.	2.3	32
194	The high general stress resistance of the <i>Saccharomyces cerevisiae fil1</i> adenylate cyclase mutant (Cyr1 ^{Lys1682}) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4â€regulated genes. Yeast, 2004, 21, 75-86.	1.7	32
195	Characterization of the Pho89 phosphate transporter by functional hyperexpression in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2008, 8, 685-696.	2.3	32
196	Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microbial Cell, 2021, 8, 111-130.	3.2	32
197	Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochemical Journal, 1999, 343, 621.	3.7	31
198	Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Archives of Microbiology, 1997, 167, 202-208.	2.2	30

JOHAN M THEVELEIN

#	Article	IF	CITATIONS
199	Heat Activation of Phycomyces blakesleeanus Spores: Thermodynamics and Effect of Alcohols, Furfural, and High Pressure. Journal of Bacteriology, 1979, 139, 478-485.	2.2	30
200	Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPC-dependent trehalose synthase-phosphatase complex. Biochimica Et Biophysica Acta - General Subjects, 1997, 1335, 40-50.	2.4	29
201	Directly from Gα to protein kinase A: the kelch repeat protein bypass of adenylate cyclase. Trends in Biochemical Sciences, 2007, 32, 547-554.	7.5	29
202	Agp2, a Member of the Yeast Amino Acid Permease Family, Positively Regulates Polyamine Transport at the Transcriptional Level. PLoS ONE, 2013, 8, e65717.	2.5	29
203	The cell division cycle gene CDC60 encodes cytosolic leucyl-tRNA synthetase in Saccharomyces cerevisiae. Gene, 1992, 120, 43-49.	2.2	28
204	The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 302, 103-119.	4.2	28
205	Aquaporin Expression and Freeze Tolerance in Candida albicans. Applied and Environmental Microbiology, 2005, 71, 6434-6437.	3.1	28
206	Reversibility characteristics of glucose-induced trehalase activation associated with the breaking of dormancy in yeast ascospores. FEBS Journal, 1983, 136, 583-387.	0.2	27
207	From feast to famine; adaptation to nutrient availability in yeast. Topics in Current Genetics, 2003, , 305-386.	0.7	27
208	Trehalose-6-P synthase AtTPS1 high molecular weight complexes in yeast and Arabidopsis. Plant Science, 2007, 173, 426-437.	3.6	27
209	The Trehalose Pathway Regulates Mitochondrial Respiratory Chain Content through Hexokinase 2 and cAMP in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 27229-27234.	3.4	27
210	Yeast nutrient transceptors provide novel insight in the functionality of membrane transporters. Current Genetics, 2013, 59, 197-206.	1.7	27
211	The lag phase rather than the exponential-growth phase on glucose is associated with a higher cAMP level in wild-type and cAPK-attenuated strains of the yeast Saccharomyces cerevisiae. Microbiology (United Kingdom), 1997, 143, 3451-3459.	1.8	26
212	Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. Journal of Biotechnology, 2006, 121, 309-317.	3.8	26
213	Gâ€proteinâ€coupled receptor Gpr1 and Gâ€protein Gpa2 of cAMPâ€dependent signaling pathway are involved in glucoseâ€induced pexophagy in the yeast <i>Saccharomyces cerevisiae</i> . Cell Biology International, 2008, 32, 502-504.	3.0	26
214	The Saccharomyces cerevisiae Phosphotyrosyl Phosphatase Activator Proteins Are Required for a Subset of the Functions Disrupted by Protein Phosphatase 2A Mutations. Experimental Cell Research, 2001, 264, 372-387.	2.6	25
215	Novel mechanisms in nutrient activation of the yeast Protein Kinase A pathway. Acta Microbiologica Et Immunologica Hungarica, 2008, 55, 75-89.	0.8	25
216	Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress. Eukaryotic Cell, 2015, 14, 884-897.	3.4	25

#	Article	IF	CITATIONS
217	Trehalase and the control of dormancy and induction of germination in fungal spores. Trends in Biochemical Sciences, 1984, 9, 495-497.	7.5	24
218	Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production. Bioresource Technology, 2016, 216, 744-753.	9.6	24
219	Polygenic Analysis in Absence of Major Effector <i>ATF1</i> Unveils Novel Components in Yeast Flavor Ester Biosynthesis. MBio, 2018, 9, .	4.1	24
220	Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family. Nature Communications, 2017, 8, 14247.	12.8	23
221	Activation of trehalase by membrane-depolarizing agents in yeast vegetative cells and ascospores. Journal of Bacteriology, 1984, 158, 337-339.	2.2	23
222	A Split-Ubiquitin Two-Hybrid Screen for Proteins Physically Interacting with the Yeast Amino Acid Transceptor Gap1 and Ammonium Transceptor Mep2. PLoS ONE, 2011, 6, e24275.	2.5	23
223	Lre1 affects chitinase expression, trehalose accumulation and heat resistance through inhibition of the Cbk1 protein kinase in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 41, 1311-1326.	2.5	22
224	Evidence for rapid uptake of <scp>d</scp> â€galacturonic acid in the yeast <i>Saccharomyces cerevisiae</i> by a channelâ€ŧype transport system. FEBS Letters, 2012, 586, 2494-2499.	2.8	22
225	Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast. Bioresource Technology, 2017, 244, 234-242.	9.6	22
226	Valorization of coffee byproducts for bioethanol production using lignocellulosic yeast fermentation and pervaporation. International Journal of Environmental Science and Technology, 2018, 15, 821-832.	3.5	21
227	Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed-bed reactor. Biotechnology for Biofuels, 2020, 13, 85.	6.2	21
228	Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochemical Journal, 2000, 350 Pt 1, 261-8.	3.7	21
229	The byp1-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi-copy suppressor tRNAGLN (CAG): Ggs1/Tps1 protein levels restraining growth on fermentable sugars and trehalose accumulation. Current Genetics, 1994, 26, 295-301.	1.7	20
230	Activation of trehalase by heat shock in yeast ascospores: Correlation with total cellular cyclic-AMP content. Current Microbiology, 1984, 10, 159-164.	2.2	19
231	Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochemical Journal, 2000, 350, 261.	3.7	19
232	The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in <i>Saccharomyces cerevisiae</i> . Biochemical Journal, 2012, 448, 307-320.	3.7	19
233	Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. AMB Express, 2014, 4, 56.	3.0	19
234	Strain Breeding Enhanced Heterologous Cellobiohydrolase Secretion by <i>Saccharomyces cerevisiae</i> in a Protein Specific Manner. Biotechnology Journal, 2017, 12, 1700346.	3.5	19

#	Article	IF	CITATIONS
235	Trehalose Metabolism: Enzymatic Pathways and Physiological Functions. , 2004, , 291-332.		19
236	Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. Biochemical Journal, 2001, 353, 157-162.	3.7	19
237	Identification of genes responsible for improved cryoresistance in fermenting yeast cells. International Journal of Food Microbiology, 2000, 55, 259-262.	4.7	18
238	Differences in glucose sensing and signaling for pexophagy between the baker's yeast <i>Saccharomyces cerevisiae</i> and the methylotrophic yeast <i>Pichia pastoris</i> . Autophagy, 2008, 4, 381-384.	9.1	18
239	Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochemical Journal, 1999, 343 Pt 3, 621-6.	3.7	18
240	Peptides induce persistent signaling from endosomes by a nutrient transceptor. Nature Chemical Biology, 2012, 8, 400-408.	8.0	17
241	Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochemical Journal, 1999, 343 Pt 1, 159-68.	3.7	17
242	A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth. Journal of Molecular Microbiology and Biotechnology, 2000, 2, 521-30.	1.0	17
243	Glucose exerts opposite effects on mRNA versus protein and activity levels of Pde1, the low-affinity cAMP phosphodiesterase from budding yeast,Saccharomyces cerevisiae. FEBS Letters, 1997, 420, 147-150.	2.8	16
244	Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait. Microbial Cell, 2016, 3, 159-175.	3.2	16
245	Regulation of maltose utilization in Saccharomyces cerevisiae by genes of the RAS/protein kinase A pathway 1. FEBS Letters, 1997, 402, 251-255.	2.8	15
246	Mammalian ribosomal and chaperone protein RPS3A counteracts α-synuclein aggregation and toxicity in a yeast model system. Biochemical Journal, 2013, 455, 295-306.	3.7	15
247	Unraveling continuous 2G ethanol production from xylose using hemicellulose hydrolysate and immobilized superior recombinant yeast in fixed-bed bioreactor. Biochemical Engineering Journal, 2021, 169, 107963.	3.6	15
248	Aberrant Intracellular pH Regulation Limiting Glyceraldehyde-3-Phosphate Dehydrogenase Activity in the Glucose-Sensitive Yeast tps1 Δ Mutant. MBio, 2020, 11, .	4.1	14
249	Multiple effects of protein phosphatase 2A on nutrient-induced signalling in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 2001, 40, 1020-1026.	2.5	13
250	Heterologous Aquaporin (<i>AQY2–1</i>) Expression Strongly Enhances Freeze Tolerance of <i>Schizosaccharomyces pombe</i> . Journal of Molecular Microbiology and Biotechnology, 2005, 9, 52-56.	1.0	13
251	QTL Mapping by Pooled-Segregant Whole-Genome Sequencing in Yeast. Methods in Molecular Biology, 2014, 1152, 251-266.	0.9	13
252	Identification of Genes with Nutrient-controlled Expression by PCR-mapping in the		19

YeastSaccharomyces cerevisiae. , 1997, 13, 973-984.

JOHAN M THEVELEIN

#	Article	IF	CITATIONS
253	Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains. Fungal Genetics and Biology, 2017, 107, 44-50.	2.1	12
254	Towards a practical industrial 2G ethanol production process based on immobilized recombinant S.Âcerevisiae: Medium and strain selection for robust integrated fixed-bed reactor operation. Renewable Energy, 2022, 185, 363-375.	8.9	12
255	Glucose-induced Trehalase Activation and Trehalose Mobilization during Early Germination of Phycomyces blakesleeanus Spores. Microbiology (United Kingdom), 1983, 129, 719-726.	1.8	11
256	Controlled Expression of Homologous Genes by Genomic Promoter Replacement in the Yeast <i>Saccharomyces cerevisiae</i> . , 2004, 267, 259-266.		11
257	Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design. Trends in Biotechnology, 2020, 38, 241-253.	9.3	11
258	Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles. Biotechnology for Biofuels, 2020, 13, 126.	6.2	11
259	Investigation of transport-associated phosphorylation of sugar in yeast mutants (snf3) lacking high-affinity glucose transport and in a mutant (fdp1) showing deficient regulation of initial sugar metabolism. Current Microbiology, 1990, 21, 39-46.	2.2	10
260	Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2. Microbiology (United Kingdom), 1995, 141, 1559-1566.	1.8	10
261	Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. Biochemical Journal, 2000, 353, 157.	3.7	10
262	A specific mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance. International Journal of Food Microbiology, 2000, 55, 103-107.	4.7	10
263	PtdIns(4,5)P2 and phospholipase C-independent Ins(1,4,5)P3 signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochemical Journal, 2001, 359, 517-523.	3.7	10
264	Evidence for involvement ofSaccharomyces cerevisiaeprotein kinase C in glucose induction of HXTgenes and derepression of SUC2. FEMS Yeast Research, 2002, 2, 93-102.	2.3	10
265	10 Trehalose Metabolism: Enzymatic Pathways and Physiological Functions. , 2016, , 191-277.		10
266	Nutrient sensing and cAMP signaling in yeast: G-protein coupled receptor versus transceptor activation of PKA. Microbial Cell, 2021, 8, 17-27.	3.2	10
267	The high-affinity glucose uptake system is not required for induction of the RAS-mediated cAMP signal by glucose in cells of the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 971, 223-226.	4.1	9
268	Phosphoinositides in yeast: genetically tractable signalling. FEMS Yeast Research, 2001, 1, 9-13.	2.3	9
269	PtdIns(4,5)P2 and phospholipase C-independent Ins(1,4,5)P3 signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochemical Journal, 2001, 359, 517.	3.7	9

270 Yeast Responses to Stresses. , 2006, , 175-195.

#	Article	IF	CITATIONS
271	Regulation of genes encoding subunits of the trehalose synthase complex in. Molecular Genetics and Genomics, 1996, 252, 470.	2.4	9
272	Towards valorization of pectin-rich agro-industrial residues: Engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol. Metabolic Engineering, 2022, 69, 1-14.	7.0	9
273	Natural Saccharomyces cerevisiae Strain Reveals Peculiar Genomic Traits for Starch-to-Bioethanol Production: the Design of an Amylolytic Consolidated Bioprocessing Yeast. Frontiers in Microbiology, 2021, 12, 768562.	3.5	9
274	Cell Immobilization Using Alginate-Based Beads as a Protective Technique against Stressful Conditions of Hydrolysates for 2G Ethanol Production. Polymers, 2022, 14, 2400.	4.5	9
275	Trehalase activity in extracts of Phycomyces blakesleeanus spores following the induction of germination by heat activation. Antonie Van Leeuwenhoek, 1981, 47, 393-404.	1.7	7
276	TheFPS1 gene product functions as a glycerol facilitator in the yeastSaccharomyces cerevisiae. Folia Microbiologica, 1994, 39, 534-536.	2.3	7
277	Effect of High Pressure on the Heat Activation in vivo of Trehalase in the Spores of Phycomyces blakesleeanus. FEBS Journal, 2005, 111, 171-175.	0.2	7
278	The nutrient transceptor/PKA pathway functions independently of TOR and responds to leucine and Gcn2 in a TOR-independent manner. FEMS Yeast Research, 2017, 17, .	2.3	7
279	Extracellular maltotriose hydrolysis by <i>Saccharomyces cerevisiae</i> cells lacking the <i>AGT1</i> permease. Letters in Applied Microbiology, 2018, 67, 377-383.	2.2	7
280	Bioethanol Production from Xylose-Rich Hydrolysate by Immobilized Recombinant <i>Saccharomyces cerevisiae</i> in Fixed-Bed Reactor. Industrial Biotechnology, 2020, 16, 75-80.	0.8	7
281	Nutrient transceptors physically interact with the yeast S6/protein kinase B homolog, Sch9, a TOR kinase target. Biochemical Journal, 2021, 478, 357-375.	3.7	7
282	Characterization of SGLT1-mediated glucose transport in Caco-2Âcell monolayers, and absence of its regulation by sugar or epinephrine. European Journal of Pharmacology, 2021, 897, 173925.	3.5	6
283	In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain. Microbial Cell Factories, 2021, 20, 114.	4.0	6
284	Activation state of protein kinase A as measured in permeabilised Saccharomyces cerevisiae cells correlates with PKA-controlled phenotypes in vivo. FEMS Yeast Research, 2003, 3, 119-126.	2.3	5
285	New Selection Marker for Plant Transformation. , 2004, 267, 385-396.		5
286	On-line identification of fermentation processes for ethanol production. Bioprocess and Biosystems Engineering, 2017, 40, 989-1006.	3.4	5
287	A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors. PLoS Genetics, 2021, 17, e1009826.	3.5	5
288	Pkh1 interacts with and phosphorylates components of the yeast Gcn2/elF2α system. Biochemical and Biophysical Research Communications, 2012, 419, 89-94.	2.1	4

#	Article	IF	CITATIONS
289	Glucose Sensing and Signal Transduction in Saccharomyces cerevisiae. , 2014, , 21-56.		4
290	Budding Yeast as a Screening Tool for Discovery of Nucleoside Analogs for Use in HSV-1 TK Suicide-Gene Therapy. BioTechniques, 1999, 27, 772-777.	1.8	3
291	TheSaccharomyces cerevisiaetype 2A protein phosphatase Pph22p is biochemically different from mammalian PP2A. FEBS Journal, 2002, 269, 3372-3382.	0.2	3
292	Whole-Genome Transformation of Yeast Promotes Rare Host Mutations with a Single Causative SNP Enhancing Acetic Acid Tolerance. Molecular and Cellular Biology, 2022, 42, e0056021.	2.3	3
293	The XXth International Conference on Yeast Genetics and Molecular Biology, Prague. FEMS Yeast Research, 2002, 1, 339-340.	2.3	2
294	Whole-Genome Transformation Promotes tRNA Anticodon Suppressor Mutations under Stress. MBio, 2021, 12, .	4.1	2
295	Isopropyl-Substituted Phenols Have A Different Effect From Other Phenols On The Breaking Of Dormancy By Heat Shock In Phycomyces Blakesleeanus Spores. Microbiology (United Kingdom), 1983, 129, 727-733.	1.8	1
296	The high-affinity glucose uptake system is not required for induction of the RAS-mediated cAMP signal by glucose in cells of the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 971, 223-226.	1.0	1
297	The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. , 1992, , 109-130.		1
298	The role of hexose transport and phosphorylation in cAMP signalling in the yeast. FEMS Yeast Research, 2001, 1, 33-45.	2.3	1
299	Stress Tolerance of the <i>Saccharomyces cerevisiae</i> Adenylate Cyclase <i>fil1</i> (<i>CYR1</i> ^{lys1682}) Mutant Depends on Hsp26. Journal of Molecular Microbiology and Biotechnology, 2010, 19, 140-146.	1.0	1
300	Involvement of the G-alpha protein Gpa2 in activation of adenylate cyclase in the yeast Saccharomyces cerevisiae. BMC News and Views, 2001, 1, .	0.0	1
301	The XXth International Conference on Yeast Genetics and Molecular Biology, Prague. FEMS Yeast Research, 2002, 1, 339-340.	2.3	Ο
302	Evidence for involvement of protein kinase C in glucose induction of genes and derepression of. FEMS Yeast Research, 2002, 2, 93-102.	2.3	0
303	Unravelling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa lanceolata. Molecular Plant, 2014, , .	8.3	Ο
304	Function and Regulation of the Yeast MIP Glycerol Export Channel Fps1p. , 2000, , 423-430.		0
305	The Signal Transduction Pathway Upstream of CDC25 — ras — Adenylate Cyclase in the Yeast Saccharomyces Cerevisiae and its Relationship to Nutrient Control of Cell Cycle Progression. , 1991, , 57-66.		0
306	Yeast and Cancer: Common Mechanism Underlying Activation of Ras by Glycolytic Flux. FASEB Journal, 2018, 32, lb143.	0.5	0