
Sam Nyung Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3652973/publications.pdf Version: 2024-02-01

SAM NYLING YL

#	Article	IF	CITATIONS
1	Exceeding 50ÂmW RMSâ€Output Magnetoâ€Mechanoâ€Electric Generator by Hybridizing Piezoelectric and Electromagnetic Induction Effects. Advanced Functional Materials, 2022, 32, .	14.9	22
2	Insights into the growth of hexagonal Si crystals using Al-based nano absorber. Semiconductor Science and Technology, 2022, 37, 045016.	2.0	2
3	Effect of coupling crater structure and Ag nanoparticles on SERS enhancement. Journal of Materials Science, 2022, 57, 7547-7555.	3.7	5
4	Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale, 2021, 13, 8418-8424.	5.6	21
5	Harvesting electrical energy using plasmon-enhanced light pressure in a platinum cut cone. Optics Express, 2021, 29, 35161.	3.4	8
6	Enhancing SERS Intensity by Coupling PSPR and LSPR in a Crater Structure with Ag Nanowires. Applied Sciences (Switzerland), 2021, 11, 11855.	2.5	11
7	Growth of a Thick AlN Epilayer by Using the Mixed-Source Hydride Vapor Phase Epitaxy Method. Journal of the Korean Physical Society, 2020, 77, 282-287.	0.7	0
8	Changes in the Photoluminescence of Monolayer and Bilayer Molybdenum Disulfide during Laser Irradiation. ACS Omega, 2020, 5, 7903-7909.	3.5	8
9	Comparison of AIN Nanowire-Like Structures Grown by using Mixed-Source Hydride Vapor Phase Epitaxy Method. Journal of the Korean Physical Society, 2019, 75, 242-247.	0.7	0
10	Growth of AlN Epilayers on Sapphire Substrates by Using the Mixed-Source Hydride Vapor Phase Epitaxy Method. Journal of the Korean Physical Society, 2019, 74, 1160-1165.	0.7	3
11	A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy and Environmental Science, 2019, 12, 666-674.	30.8	89
12	A Method to Enhance the Electric Field Intensity in a Gold Sub-microhole by Adding Copper Microspheres. Journal of the Korean Physical Society, 2019, 74, 111-115.	0.7	0
13	Fabrication and Time-Dependent Analysis of Micro-Hole in GaAs(100) Single Crystal Wafer Using Wet Chemical Etching Method. Korean Journal of Materials Research, 2019, 29, 155-159.	0.2	5
14	Homogeneity and tolerance to heat of monolayer MoS2 on SiO2 and h-BN. RSC Advances, 2018, 8, 12900-12906.	3.6	8
15	Fabrication of selective-area growth InGaN LED by mixed-source hydride vapor-phase epitaxy. Japanese Journal of Applied Physics, 2018, 57, 01AD03.	1.5	4
16	Verticalâ€Type Blue Light Emitting Diode by Mixedâ€Source Hydride Vapor Phase Epitaxy Method. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700491.	1.8	3
17	Electrode-Evaporation Method of III-nitride Vertical-type Single Chip LEDs. Journal of the Korean Physical Society, 2018, 73, 1346-1350.	0.7	0
18	Finite-difference time-domain analysis of local electric field enhancement by nanoholes of varying shape and diameter in metal with different thicknesses. Japanese Journal of Applied Physics, 2018, 57, 122001.	1.5	2

Sam Nyung Yi

#	Article	IF	CITATIONS
19	Changes in the Raman spectra of monolayer MoS ₂ upon thermal annealing. Journal of Raman Spectroscopy, 2018, 49, 1938-1944.	2.5	42
20	Energy storage characteristics of {001} oriented Pb(Zr0.52Ti0.48)O3 thin film grown by chemical solution deposition. Thin Solid Films, 2018, 660, 434-438.	1.8	15
21	Growth of an AlN Epilayer by Using Mixed-Source Hydride Vapor Phase Epitaxy. New Physics: Sae Mulli, 2018, 68, 39-45.	0.1	2
22	Vertical-Type Phosphor-Free White-Light-Emitting Diode Fabricated by Using a Mixed-Source Hydride Vapor-Phase Epitaxy Method. New Physics: Sae Mulli, 2018, 68, 742-748.	0.1	0
23	Fabrication of Microholes in Silicon Wafers by Using Wet-Chemical Etching. New Physics: Sae Mulli, 2018, 68, 834-838.	0.1	1
24	Characteristics of Copper Microspheres Grown by Using Mixed-Source Hydride Vapor-Phase Epitaxy. New Physics: Sae Mulli, 2018, 68, 1052-1058.	0.1	0
25	AlN and AlGaN layers grown on Si(111) substrate by mixed-source hydride vapor phase epitaxy method. Japanese Journal of Applied Physics, 2017, 56, 01AD07.	1.5	5
26	Effects of P3HT concentration on the electrical properties of the Au/PEDOT:PSS/P3HT/n-GaN hybrid junction structure. Journal of the Korean Physical Society, 2017, 71, 349-354.	0.7	7
27	Mechanism of light emission and manufacturing process of vertical-type light-emitting diode grown by hydride vapor phase epitaxy. Japanese Journal of Applied Physics, 2017, 56, 01AD03.	1.5	5
28	Atomic Arrangements and Orientations of Aligned Gallium-Nitride Nanoneedles Grown by Using Hydride Vapor Phase Epitaxy. New Physics: Sae Mulli, 2017, 67, 30-35.	0.1	0
29	Development of a Blue Light-Emitting Diode by Using a Mixed-Source Hydride-Vapor-Phase Epitaxy Method. New Physics: Sae Mulli, 2017, 67, 444-450.	0.1	0
30	Effect of Mixed Ga Metal for AlN Growth by Using Hydride Vapor-Phase Epitaxy. New Physics: Sae Mulli, 2017, 67, 1058-1065.	0.1	0
31	Enhanced magnetic energy harvesting properties of magneto-mechano-electric generator by tailored geometry. Applied Physics Letters, 2016, 109, .	3.3	40
32	Pole figure measurement of the initial growth of GaN nanoneedles on GaN/Si(111) by using hydride vapor phase epitaxy. Journal of the Korean Physical Society, 2016, 69, 837-841.	0.7	1
33	Growth of AIN layer on patterned sapphire substrate by hydride vapor phase epitaxy. Japanese Journal of Applied Physics, 2016, 55, 05FC02.	1.5	10
34	Growth of a HVPE-AlGaN Epilayers with High Al Contents on Si (111) Substrates. New Physics: Sae Mulli, 2016, 66, 1106-1111.	0.1	0
35	Growth of an AlN Epilayer on a Patterned Sapphire Substrate by Using Mixed-Source HVPE. New Physics: Sae Mulli, 2016, 66, 1391-1396.	0.1	0
36	Charge Transport in Thick Reduced Graphene Oxide Film. Journal of Physical Chemistry C, 2015, 119, 28685-28690.	3.1	35

Sam Nyung Yi

#	Article	IF	CITATIONS
37	Carbon microspheres grown by using hydride vapor phase epitaxy. Journal of the Korean Physical Society, 2015, 67, 1268-1272.	0.7	0
38	Transition of graphene oxide-coated fiber bundles from insulator to conductor by chemical reduction. Synthetic Metals, 2015, 204, 90-94.	3.9	29
39	Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer. Materials Research Bulletin, 2015, 68, 326-330.	5.2	8
40	Behavior of GaN nanoneedles grown by using hydride vapor phase epitaxy for different growth times. Journal of the Korean Physical Society, 2015, 66, 1270-1274.	0.7	1
41	Thick AlN epilayer grown by using the HVPE method. Journal of the Korean Physical Society, 2015, 67, 643-647.	0.7	7
42	Effects of Solvents in the Fabrication of a Hybrid Optical Device Based on GaN and MEH-PPV. New Physics: Sae Mulli, 2015, 65, 14-20.	0.1	0
43	Fabrication of n-GaN/MDMO-PPV hybrid structures for optoelectronic devices. Journal of Luminescence, 2014, 147, 1-4.	3.1	6
44	Current-voltage Characteristics of PEDOT:PSS/GaN Hybrid-junction Devices with Various Thicknesses of the PEDOT:PSS Layers. New Physics: Sae Mulli, 2014, 64, 1072-1076.	0.1	3
45	Simulation for Improving the Light Extraction Efficiency of a GaN-based Light-emitting Diode via a Truncated Cone-shaped Pattern. New Physics: Sae Mulli, 2014, 64, 801-805.	0.1	0
46	Growth of GaN on Metallic Compound Graphite Substrate Using Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2013, 52, 11NG03.	1.5	0
47	A GaN nanoneedle inorganic/organic heterojunction structure for optoelectronic devices. Materials Letters, 2013, 91, 191-194.	2.6	20
48	Development of the Hybrid Conjugated Polymer Solar Cell Based on GaN Quantum Dots. Japanese Journal of Applied Physics, 2013, 52, 01AD02.	1.5	4
49	Crystal Orientation of GaN Nanostructures Grown on Al\$_{2}\$O\$_{3}\$ and Si(111) with a Zr Buffer Layer. Japanese Journal of Applied Physics, 2012, 51, 01AF04.	1.5	2
50	Ultraviolet Light Emitting Diode with High Quality Epilayer Grown by Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 01AG01.	1.5	0
51	Nonphosphor White Light Emitting Diodes by Mixed-Source Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 01AGO6.	1.5	1
52	A Detailed Investigation of the Growth Conditions of Gallium Nitride Nanorods by Hydride Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 01AF05.	1.5	2
53	Evolution of GaN nanoflowers from AlN–SiO2 grains on a silicon substrate by chemical vapor reaction. Vacuum, 2011, 86, 201-205.	3.5	4
54	Molecular detection based on the electrical conductance of gold nanoparticle arrays. Sensors and Actuators B: Chemical, 2011, 156, 990-993.	7.8	3

SAM NYUNG YI

#	Article	IF	CITATIONS
55	Characterization of the InGaN/GaN Multi-Quantum-Wells Light-Emitting Diode Grown on Patterned Sapphire Substrate with Wide Electroluminescence Spectrum. Japanese Journal of Applied Physics, 2011, 50, 01AD06.	1.5	3
56	Fabrication of the CuInGaSe Pellet and Characterization of the Thin Film. Japanese Journal of Applied Physics, 2011, 50, 01AG01.	1.5	0
57	Optical gain of compressively strained InGaAs/InP multiple quantum wires. Semiconductor Science and Technology, 2011, 26, 075013.	2.0	1
58	Comparison of GaN Nanoneedle Structures Formed by Using the HVPE Method. Journal of the Korean Physical Society, 2011, 58, 1351-1355.	0.7	4
59	Optical Properties of Wurtzite ZnO -based Quantum Well Structures with Piezoelectric and Spontaneous Polarizations. , 2011, , 273-300.		0
60	Oxygen plasma effects on the electrical conductance of single-walled carbon nanotube bundles. Journal Physics D: Applied Physics, 2010, 43, 305402.	2.8	18
61	Strain relaxation effect on electronic properties of compressively strained InGaAs/InP vertically stacked multiple quantum wires. Journal of Applied Physics, 2010, 108, 023104.	2.5	4
62	Optical Gain in Wurtzite ZnO/ZnMgO Quantum Well Lasers. Japanese Journal of Applied Physics, 2005, 44, L1403-L1406.	1.5	3
63	Application of a continued-fraction-based theory to magneto-optical intraband transition in GaAs and CdS. Current Applied Physics, 2003, 3, 491-494.	2.4	1
64	Comparison of two schemes for cyclotron transition absorption line-widths in Ge and Si. Zeitschrift Für Physik B-Condensed Matter, 1996, 100, 613-617.	1.1	0
65	Composite-fermion excitations and the electronic spectra of fractional quantum Hall systems. Physical Review B, 1996, 53, 9599-9601.	3.2	7
66	Application of operator algebra technique to some problems in condensed matter physics. Canadian Journal of Physics, 1994, 72, 596-600.	1.1	1
67	Derivation of correlation spectra by the operator algebra technique. Journal of Mathematical Physics, 1992, 33, 336-342.	1.1	1
68	Cyclotron transition linewidths due to electron-phonon interaction via piezoelectric scattering. Journal of Physics Condensed Matter, 1990, 2, 3515-3527.	1.8	5
69	Theory of direct-interband-transition line shapes based on Mori's method. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1987, 9, 927-939.	0.4	6
70	Validity of the perturbative expansions in the theories of cyclotron resonance lineshape. European Physical Journal B, 1984, 54, 99-102.	1.5	3