
Milivoj R Belic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3651494/publications.pdf Version: 2024-02-01

MILIVOL P RELIC

#	Article	IF	CITATIONS
1	Localized pulses in optical fibers governed by perturbed Fokas–Lenells equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 421, 127782.	2.1	18
2	Family of optical solitons for perturbed Fokas–Lenells equation. Optik, 2022, 249, 168224.	2.9	28
3	Two-dimensional asymmetric Laguerre-Gaussian diffraction-free beams. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 423, 127818.	2.1	7
4	Cubic–quartic solitons in couplers with optical metamaterials having triple-power law nonlinearity (sequel to polynomial law). Optik, 2022, 250, 168264.	2.9	1
5	Multi-elliptic rogue wave clusters of the nonlinear Schrödinger equation on different backgrounds. Nonlinear Dynamics, 2022, 108, 479-490.	5.2	1
6	Chirped optical soliton propagation in birefringent fibers modeled by coupled Fokas-Lenells system. Chaos, Solitons and Fractals, 2022, 155, 111751.	5.1	45
7	Higher-order breathers as quasi-rogue waves on a periodic background. Nonlinear Dynamics, 2022, 107, 3819-3832.	5.2	3
8	On different aspects of the optical rogue waves nature. Nonlinear Dynamics, 2022, 108, 1655-1670.	5.2	10
9	Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dynamics, 2022, 108, 1671-1680.	5.2	21
10	Controllable two-dimensional diffraction-free polygon beams. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 432, 128009.	2.1	4
11	Single-Atom Catalysts Supported by Graphene and Hexagonal Boron Nitride: Structural Stability in the Oxygen Environment. Journal of Physical Chemistry C, 2022, 126, 8637-8644.	3.1	2
12	Beam Steering Efficiency in Resonant Reflective Metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	2.9	7
13	Optical solitons and conservation laws of Kudryashov's equation with improved modified extended tanh-function. Optik, 2021, 225, 165406.	2.9	55
14	Gausson parameter dynamics in ENZ-material based waveguides using moment method. Optik, 2021, 227, 165273.	2.9	4
15	Circular Polarization Selective Metamaterial Absorber in Terahertz Frequency Range. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-6.	2.9	16
16	Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by traveling waves and Adomian decomposition. Optical and Quantum Electronics, 2021, 53, 1.	3.3	4
17	Solitons and conservation laws in magneto–optic waveguides with generalized Kudryashov's equation. Chinese Journal of Physics, 2021, 69, 186-205.	3.9	33
18	Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-Gordon equation approach. Journal of Optics (India), 2021, 50, 322-329.	1.7	38

#	Article	IF	CITATIONS
19	Optical soliton perturbation with Kudryashov's law of arbitrary refractive index. Journal of Optics (India), 2021, 50, 245-252.	1.7	10
20	Optical soliton polarization with Lakshmanan–Porsezian–Daniel model by unified approach. Results in Physics, 2021, 22, 103958.	4.1	31
21	Optical soliton perturbation with Kudryashov's law of refractive index by modified sub-ODE approach. Journal of Nonlinear Optical Physics and Materials, 2021, 30, 2150004.	1.8	2
22	Chirped super–Gaussian and super–sech pulse perturbation of nonlinear Schrödinger's equation with quadratic–cubic nonlinearity by variational principle. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 396, 127231.	2.1	10
23	Breather solutions of the nonlocal nonlinear self-focusing Schrödinger equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 395, 127228.	2.1	20
24	Propagation of chirped periodic and localized waves with higher-order effects through optical fibers. Chaos, Solitons and Fractals, 2021, 146, 110873.	5.1	25
25	Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model. Optik, 2021, 233, 166385.	2.9	16
26	Cubic–quartic optical soliton perturbation in polarization-preserving fibers with Fokas–Lenells equation. Optik, 2021, 234, 166543.	2.9	19
27	Gray optical dips of Kundu-Mukherjee-Naskar model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 401, 127341.	2.1	9
28	Cubic–quartic optical solitons with Kudryashov's arbitrary form of nonlinear refractive index. Optik, 2021, 238, 166747.	2.9	12
29	Formation of chirped kink similaritons in non-Kerr media with varying Raman effect. Results in Physics, 2021, 26, 104381.	4.1	9
30	Cubic–quartic optical soliton perturbation with Fokas–Lenells equation by sine–Gordon equation approach. Results in Physics, 2021, 26, 104409.	4.1	13
31	Highly dispersive optical solitons and conservation laws with Kudryashov's sextic power-law of nonlinear refractive index. Optik, 2021, 240, 166915.	2.9	3
32	Cubic–quartic polarized optical solitons and conservation laws for perturbed Fokas–Lenells model. Journal of Nonlinear Optical Physics and Materials, 2021, 30, .	1.8	6
33	Solitons in nonlinear directional couplers with optical metamaterials by unified Riccati equation approach. Optik, 2021, 241, 167244.	2.9	13
34	Multipole solitons in cold atomic gases with parity-time potential. Optik, 2021, 243, 167386.	2.9	0
35	Cubic–quartic solitons for twin-core couplers in optical metamaterials. Optik, 2021, 245, 167632.	2.9	7
36	Solitons in spin-orbit-coupled systems with fractional spatial derivatives. Chaos, Solitons and Fractals, 2021, 152, 111406.	5.1	11

#	Article	IF	CITATIONS
37	Algorithm for dark solitons with Radhakrishnan–Kundu–Lakshmanan model in an optical fiber. Results in Physics, 2021, 30, 104806.	4.1	14
38	Chirped optical solitons having polynomial law of nonlinear refractive index with self-steepening and nonlinear dispersion. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 417, 127698.	2.1	11
39	Cubic–quartic solitons in couplers with optical metamaterials having parabolic law nonlinearity. Optik, 2021, 247, 167960.	2.9	3
40	Cubic–quartic solitons in couplers with optical metamaterials having dual-power law of nonlinearity. Optik, 2021, 247, 167969.	2.9	2
41	Cubic–quartic solitons in couplers with optical metamaterials having polynomial law of nonlinearity. Optik, 2021, 248, 168087.	2.9	7
42	Three-dimensional spatiotemporal nondiffracting parabolic cylinder beams. Physical Review A, 2021, 104, .	2.5	3
43	Optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model by the aid of a few insightful algorithms. Optik, 2020, 200, 163281.	2.9	8
44	Optical solitons with Kudryashov's equation by extended trial function. Optik, 2020, 202, 163290.	2.9	56
45	Optical solitons in birefringent fibers having anti-cubic nonlinearity with a few prolific integration algorithms. Optik, 2020, 200, 163229.	2.9	13
46	Optical solitons in birefringent fibers with quadratic–cubic refractive index by ϕ6–model expansion. Optik, 2020, 202, 163620.	2.9	12
47	Dispersive optical dromions and domain walls with a few golden integration formulae. Optik, 2020, 202, 163439.	2.9	6
48	Cubic-quartic bright optical solitons with improved Adomian decomposition method. Journal of Advanced Research, 2020, 21, 161-167.	9.5	44
49	Solitons in the two-dimensional fractional Schrödinger equation with radially symmetric PT potential. Optik, 2020, 202, 163652.	2.9	4
50	Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results in Physics, 2020, 16, 102913.	4.1	98
51	Optical solitons with complex Ginzburg-Landau equation having a plethora of nonlinear forms with a couple of improved integration norms. Optik, 2020, 207, 163804.	2.9	27
52	Localized dynamical behavior in the (2+1)-dimensional sine-Gordon equation. Optik, 2020, 204, 164115.	2.9	1
53	Optical solitons with differential group delay for complex Ginzburg–Landau equation. Results in Physics, 2020, 16, 102888.	4.1	12
54	Optical solitons with Chen–Lee–Liu equation by Lie symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126202	2.1	35

#	Article	IF	CITATIONS
55	Optical solitons with differential group delay for complex Ginzburg–Landau equation having Kerr and parabolic laws of refractive index. Optik, 2020, 202, 163737.	2.9	14
56	Chirped and chirp-free optical solitons having generalized anti-cubic nonlinearity with a few cutting-edge integration technologies. Optik, 2020, 206, 163745.	2.9	14
57	Optical dromions, domain walls and conservation laws with Kundu–Mukherjee–Naskar equation via traveling waves and Lie symmetry. Results in Physics, 2020, 16, 102850.	4.1	38
58	Conservation laws for optical solitons with polynomial and triple-power laws of refractive index. Optik, 2020, 202, 163476.	2.9	8
59	Cubic–quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index. Optik, 2020, 203, 163885.	2.9	18
60	Solitons and conservation laws in magneto-optic waveguides with triple-power law nonlinearity. Journal of Optics (India), 2020, 49, 584-590.	1.7	54
61	Optical soliton perturbation with exotic forms of nonlinear refractive index. Optik, 2020, 223, 165329.	2.9	2
62	Pure-cubic optical soliton perturbation with full nonlinearity by unified Riccati equation expansion. Optik, 2020, 223, 165445.	2.9	32
63	Accessible solitons in three-dimensional parabolic cylindrical coordinates. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126914.	2.1	5
64	Solitons in nonlinear directional couplers with optical metamaterials by first integral method. Optik, 2020, 218, 165208.	2.9	13
65	Stationary optical solitons with Sasa–Satsuma equation having nonlinear chromatic dispersion. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126721.	2.1	27
66	Computational investigation of cobalt and copper bis (oxothiolene) complexes as an alternative for olefin purification. Journal of Molecular Modeling, 2020, 26, 205.	1.8	0
67	Solitions in magneto–optic waveguides with anti–cubic nonlinearity. Optik, 2020, 222, 165313.	2.9	10
68	Pure-cubic optical soliton perturbation with full nonlinearity. Optik, 2020, 222, 165394.	2.9	19
69	Dark solitons in the inhomogeneous self-defocusing Kerr media. Optik, 2020, 222, 165417.	2.9	7
70	Solitons in magneto–optic waveguides with Kudryashov's law of refractive index. Chaos, Solitons and Fractals, 2020, 140, 110129.	5.1	32
71	Solitons in magneto–optic waveguides with parabolic law nonlinearity. Optik, 2020, 222, 165314.	2.9	2
72	Solitons and conservation laws in magneto-optic waveguides with polynomial law nonlinearity. Optik, 2020, 223, 165397.	2.9	1

#	Article	IF	CITATIONS
73	A pen-picture of solitons and conservation laws in magneto-optic waveguides having quadratic-cubic law of nonlinear refractive index. Optik, 2020, 223, 165330.	2.9	17
74	Stationary optical solitons with nonlinear chromatic dispersion having quadratic–cubic law of refractive index. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126606.	2.1	16
75	Light propagation along a helical waveguide: variational approach. Optical and Quantum Electronics, 2020, 52, 1.	3.3	1
76	Manipulation of Airy Beams in Dynamic Parabolic Potentials. Annalen Der Physik, 2020, 532, 1900584.	2.4	9
77	Optical solitons in birefringent fibers with Radhakrishnan–Kundu–Lakshmanan equation by a couple of strategically sound integration architectures. Chinese Journal of Physics, 2020, 65, 341-354.	3.9	19
78	Optical solitons in birefringent fibers for Radhakrishnan–Kundu–Lakshmanan equation with five prolific integration norms. Optik, 2020, 208, 164550.	2.9	28
79	Embedded solitons in the \$\$(2+1)\$\$-dimensional sine-Gordon equation. Nonlinear Dynamics, 2020, 100, 1519-1526.	5.2	9
80	Self-frequency shift effect for chirped self-similar solitons in a tapered graded-indexed waveguide. Optics Communications, 2020, 468, 125800.	2.1	13
81	Cubic quintic Ginzburg Landau equation as a model for resonant interaction of EM field with nonlinear media. Optical and Quantum Electronics, 2020, 52, 1.	3.3	7
82	Soliton perturbation and conservation laws in magneto-optic waveguides with parabolic law nonlinearity. Optik, 2020, 220, 165196.	2.9	9
83	Optical soliton perturbation with Chen–Lee–Liu equation. Optik, 2020, 220, 165177.	2.9	48
84	Transient optical response of cold Rydberg atoms with electromagnetically induced transparency. Physical Review A, 2020, 101, .	2.5	23
85	Excitations of nonlinear local waves described by the sinh-Gordon equation with a variable coefficient. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126264.	2.1	2
86	Spatiotemporal solitons in cold Rydberg atomic gases with Bessel optical lattices. Applied Mathematics Letters, 2020, 106, 106230.	2.7	36
87	Optical solitons with generalized anti-cubic nonlinearity by Lie symmetry. Optik, 2020, 206, 163638.	2.9	27
88	Solitons in magneto–optic waveguides with quadratic–cubic nonlinearity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126456.	2.1	24
89	Optical solitons in fiber Bragg gratings with generalized anti-cubic nonlinearity by extended auxiliary equation. Chinese Journal of Physics, 2020, 65, 613-628.	3.9	21
90	Parity-time symmetry light bullets in a cold Rydberg atomic gas. Optics Express, 2020, 28, 16322.	3.4	31

#	Article	IF	CITATIONS
91	Depth distribution of organic matter concentration and stocks in soils of Vojvodina. Zbornik Matice Srpske Za Prirodne Nauke, 2020, , 19-29.	0.1	0
92	Solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity having Kerr law of nonlinear refractive index. Journal of Nonlinear Optical Physics and Materials, 2020, 29, 2050011.	1.8	5
93	Cubic–quartic solitons in couplers with optical metamaterials having power law of refractive index. Journal of Nonlinear Optical Physics and Materials, 2020, 29, 2050009.	1.8	4
94	Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study. Microporous and Mesoporous Materials, 2019, 273, 41-49.	4.4	15
95	Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study. Materials Chemistry and Physics, 2019, 236, 121816.	4.0	4
96	Propagation of chirped optical similaritons in inhomogeneous tapered centrosymmetric nonlinear waveguides doped with resonant impurities. Laser Physics, 2019, 29, 085401.	1.2	4
97	Nonlinear control of spatial Thirring vector solitons in electromagnetically induced transparency. Optik, 2019, 193, 163029.	2.9	2
98	Sub pico-second optical pulses in birefringent fibers for Kaup–Newell equation with cutting-edge integration technologies. Results in Physics, 2019, 15, 102660.	4.1	20
99	Optical solitons with nonlocal-parabolic combo nonlinearity by Lie symmetry analysis coupled with modified $G\hat{a}\in ^2/G$ -expansion. Results in Physics, 2019, 15, 102713.	4.1	14
100	Optical solitons with Kudryashov's equation by F-expansion. Optik, 2019, 199, 163338.	2.9	36
101	Optical solitons with complex Ginzburg–Landau equation for two nonlinear forms using F-expansion. Chinese Journal of Physics, 2019, 61, 255-261.	3.9	43
102	Optical solitons with complex Ginzburg–Landau equation having three nonlinear forms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 126026.	2.1	29
103	Dispersive solitons in optical fibers and DWDM networks with Schrödinger–Hirota equation. Optik, 2019, 199, 163214.	2.9	22
104	Conical Diffraction from Approximate Dirac Cone States in a Superhoneycomb Lattice. Annalen Der Physik, 2019, 531, 1900295.	2.4	5
105	Optical soliton perturbation of Fokas-Lenells equation by the Laplace-Adomian decomposition algorithm. Journal of the European Optical Society-Rapid Publications, 2019, 15, .	1.9	18
106	New traveling wave and soliton solutions of the sine-Gordon equation with a variable coefficient. Optik, 2019, 198, 163247.	2.9	4
107	Bright and singular optical solitons for Kaup–Newell equation with two fundamental integration norms. Optik, 2019, 182, 594-597.	2.9	34
108	Electrically Tunable Metal–Semiconductor–Metal Terahertz Metasurface Modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	2.9	30

#	Article	IF	CITATIONS
109	Vortex solitons in Bose–Einstein condensates with spin–orbit coupling and Gaussian optical lattices. Applied Mathematics Letters, 2019, 92, 15-21.	2.7	10
110	Highly dispersive optical solitons with cubic–quintic–septic law by exp-expansion. Optik, 2019, 186, 321-325.	2.9	40
111	Optical solitons having anti-cubic nonlinearity with two integration architectures. Chinese Journal of Physics, 2019, 60, 659-664.	3.9	11
112	Optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model by modified simple equation. Optik, 2019, 192, 162899.	2.9	33
113	Optical soliton perturbation in parabolic law medium having weak non-local nonlinearity by a couple of strategic integration architectures. Results in Physics, 2019, 13, 102334.	4.1	6
114	Optical soliton perturbation with quadratic-cubic nonlinearity by mapping methods. Chinese Journal of Physics, 2019, 60, 632-637.	3.9	13
115	Talbot carpets by rogue waves of extended nonlinear Schrödinger equations. Nonlinear Dynamics, 2019, 97, 1215-1225.	5.2	3
116	Self-similar solitons in optical waveguides with dual-power law refractive index. Laser Physics, 2019, 29, 075401.	1.2	5
117	Highly dispersive optical solitons with non-local nonlinearity by exp-function. Optik, 2019, 186, 288-292.	2.9	32
118	Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrödinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system. Nonlinear Dynamics, 2019, 97, 471-483.	5.2	41
119	Optical solitons in birefringent fibers having anti-cubic nonlinearity with exp-function. Optik, 2019, 186, 363-368.	2.9	15
120	Highly dispersive optical solitons with quadratic–cubic law by exp-function. Optik, 2019, 186, 431-435.	2.9	22
121	Ab Initio Study of the Electronic, Vibrational, and Mechanical Properties of the Magnesium Diboride Monolayer. Condensed Matter, 2019, 4, 37.	1.8	9
122	Cubic-quartic optical soliton perturbation by semi-inverse variational principle. Optik, 2019, 185, 45-49.	2.9	27
123	Optical solitons in birefringent fibers having anti-cubic nonlinearity with extended trial function. Optik, 2019, 185, 456-463.	2.9	16
124	Optical solitons in fiber Bragg gratings with dispersive reflectivity for quadratic–cubic nonlinearity by extended trial function method. Optik, 2019, 185, 50-56.	2.9	31
125	Highly dispersive optical solitons with Kerr law nonlinearity by exp-function. Optik, 2019, 185, 121-125.	2.9	18
126	Optical solitons having anti-cubic nonlinearity with strategically sound integration architectures. Optik, 2019, 185, 57-70.	2.9	12

#	Article	IF	CITATIONS
127	Optical solitons and other solutions with anti-cubic nonlinearity by Lie symmetry analysis and additional integration architectures. Optik, 2019, 185, 30-38.	2.9	19
128	<mml:math <br="" altimg="si9.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi mathvariant="italic">W</mml:mi></mml:math> -shaped and bright optical solitons in negative indexed materials. Chaos, Solitons and Fractals, 2019, 123, 101-107.	5.1	25
129	Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion. Optik, 2019, 182, 897-906.	2.9	114
130	Generation of spatiotemporal Airy-Bessel wave packets. Optik, 2019, 183, 441-444.	2.9	1
131	Optical solitons for Lakshmanan–Porsezian–Daniel model by Riccati equation approach. Optik, 2019, 182, 922-929.	2.9	38
132	Highly dispersive optical solitons with undetermined coefficients. Optik, 2019, 182, 890-896.	2.9	48
133	Highly dispersive optical solitons with quadratic-cubic law by F-expansion. Optik, 2019, 182, 930-943.	2.9	52
134	Adiabatic Vlasov theory of ultrastrong femtosecond laser pulse propagation in plasma. The scaling of ultrarelativistic quasi-stationary states: spikes, peakons, and bubbles. Physics of Plasmas, 2019, 26, 123104.	1.9	1
135	Chirped bright and double-kinked quasi-solitons in optical metamaterials with self-steepening nonlinearity. Journal of Modern Optics, 2019, 66, 192-199.	1.3	14
136	Generation and control of multiple solitons under the influence of parameters. Nonlinear Dynamics, 2019, 95, 143-150.	5.2	106
137	Propagation of chirped gray optical dips in nonlinear metamaterials. Optics Communications, 2019, 430, 461-466.	2.1	30
138	Topological insulator properties of photonic kagome helical waveguide arrays. Results in Physics, 2019, 12, 996-1001.	4.1	17
139	Multipole solitons in a cold atomic gas with a parity-time symmetric potential. Nonlinear Dynamics, 2019, 95, 2325-2332.	5.2	7
140	Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dynamics, 2019, 95, 2855-2865.	5.2	21
141	Optical solitons in (2+1)–Dimensions with Kundu–Mukherjee–Naskar equation by extended trial function scheme. Chinese Journal of Physics, 2019, 57, 72-77.	3.9	125
142	Bright optical solitons for Lakshmanan–Porsezian–Daniel model with spatio-temporal dispersion by improved Adomian decomposition method. Optik, 2019, 181, 891-897.	2.9	17
143	Bright optical solitons of Chen-Lee-Liu equation with improved Adomian decomposition method. Optik, 2019, 181, 964-970.	2.9	24
144	Self-similar optical solitons with continuous-wave background in a quadratic–cubic non-centrosymmetric waveguide. Optics Communications, 2019, 437, 392-398.	2.1	39

#	Article	IF	CITATIONS
145	Solitons in nonlinear directional couplers with optical metamaterials by exp(â^â€î¦(ξ))-expansion. Optik, 2019, 179, 443-462.	2.9	18
146	Optical solitons pertutabation with Fokas-Lenells equation by exp(â~ï•(ξ))-expansion method. Optik, 2019, 179, 341-345.	2.9	31
147	Dispersive solitons in optical metamaterials having parabolic form of nonlinearity. Optik, 2019, 179, 1009-1018.	2.9	13
148	Optical solitons for higher-order nonlinear Schrödinger's equation with three exotic integration architectures. Optik, 2019, 179, 861-866.	2.9	19
149	Resonant optical solitons with fractional temporal evolution by modified extended direct algebraic method. Optik, 2019, 181, 1075-1079.	2.9	3
150	Solitons in optical fiber Bragg gratings with dispersive reflectivity by extended trial function method. Optik, 2019, 182, 88-94.	2.9	50
151	Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion. Optik, 2019, 181, 1028-1038.	2.9	118
152	Solitons in optical fiber Bragg gratings with dispersive reflectivity. Optik, 2019, 182, 119-123.	2.9	35
153	Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp($\hat{a}^{\gamma}\hat{l} (\hat{l}_{\gamma}))$ -expansion. Optik, 2019, 178, 439-448.	2.9	40
154	Bright soliton interactions in a \$\$mathbf (2 +mathbf 1) \$\$ (2 + 1) -dimensional fourth-order variable-coefficient nonlinear SchrĶdinger equation for the Heisenberg ferromagnetic spin chain. Nonlinear Dynamics, 2019, 95, 983-994.	5.2	34
155	Stochastic perturbation of optical Gaussons with bandpass filters and multi-photon absorption. Optik, 2019, 178, 297-300.	2.9	10
156	Conservation laws for optical solitons with non-local nonlinearity. Optik, 2019, 178, 846-849.	2.9	3
157	Stochastic perturbation of optical solitons having anti-cubic nonlinearity with bandpass filters and multi-photon absorption. Optik, 2019, 178, 1120-1124.	2.9	20
158	Optical solitons in birefringent fibers with Kundu-Eckhaus equation. Optik, 2019, 178, 550-556.	2.9	29
159	Optical solitons in birefringent fibers with weak non-local nonlinearity using two forms of integration architecture. Optik, 2019, 178, 669-680.	2.9	14
160	Chirped and chirp-free optical solitons with generalized anti-cubic nonlinearity by extended trial function scheme. Optik, 2019, 178, 636-644.	2.9	36
161	Optical soliton molecules in birefringent fibers having weak non-local nonlinearity and four-wave mixing with a couple of strategic integration architectures. Optik, 2019, 179, 927-940.	2.9	14
162	Optical solitons in birefringent fibers with quadratic–cubic nonlinearity by extended trial function scheme. Optik, 2019, 176, 542-548.	2.9	18

#	Article	IF	CITATIONS
163	Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended Jacobi's elliptic function expansion. Optik, 2019, 178, 117-121.	2.9	7
164	Optical solitons in birefringent fibers with quadratic–cubic nonlinearity by extended G′/G-expansion scheme. Optik, 2019, 178, 59-65.	2.9	22
165	Chirped singular and combo optical solitons for Chen–Lee–Liu equation with three forms of integration architecture. Optik, 2019, 178, 172-177.	2.9	17
166	Chirped envelope optical solitons for Kaup–Newell equation. Optik, 2019, 177, 1-7.	2.9	31
167	Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dynamics, 2019, 95, 557-563.	5.2	116
168	Generating Lieb and super-honeycomb lattices by employing the fractional Talbot effect. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 862.	2.1	10
169	Asymmetric conical diffraction in dislocated edge-centered square lattices. Optics Express, 2019, 27, 6300.	3.4	9
170	Asymmetric conical diffraction in dislocated edge-centered square lattices: erratum. Optics Express, 2019, 27, 24498.	3.4	0
171	Optical solitons and group invariant solutions to Lakshmanan–Porsezian–Daniel model in optical fibers and PCF. Optik, 2018, 160, 86-91.	2.9	35
172	Formic Acid Synthesis by CO ₂ Hydrogenation over Singleâ€Atom Catalysts Based on Ru and Cu Embedded in Graphene. ChemistrySelect, 2018, 3, 2631-2637.	1.5	31
173	Optical network topology with DWDM technology for log law medium. Optik, 2018, 160, 353-360.	2.9	14
174	Quasi-stable rotating solitons supported by a single spiraling waveguide. Optical and Quantum Electronics, 2018, 50, 1.	3.3	1
175	Solitons for perturbed Gerdjikov–Ivanov equation in optical fibers and PCF by extended Kudryashov's method. Optical and Quantum Electronics, 2018, 50, 1.	3.3	48
176	Optical solitons in parabolic law medium with weak non-local nonlinearity using modified extended direct algebraic method. Optik, 2018, 161, 180-186.	2.9	19
177	Dispersive optical solitons with Schrödinger–Hirota model by trial equation method. Optik, 2018, 162, 35-41.	2.9	47
178	Optical solitons with Lakshmanan–Porsezian–Daniel model by modified extended direct algebraic method. Optik, 2018, 162, 228-236.	2.9	46
179	Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by Lie group analysis. Optik, 2018, 163, 137-141.	2.9	47
180	Dispersive optical solitons with differential group delay by a couple of integration schemes. Optik, 2018, 162, 108-120.	2.9	17

#	Article	IF	CITATIONS
181	Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic–cubic nonlinearity. Optik, 2018, 164, 84-92.	2.9	123
182	Optical solitons with differential group delay and four-wave mixing using two integration procedures. Optik, 2018, 167, 170-188.	2.9	19
183	Sub pico-second pulses in mono-mode optical fibers with Kaup–Newell equation by a couple of integration schemes. Optik, 2018, 167, 121-128.	2.9	130
184	Optical soliton perturbation in magneto-optic waveguides. Journal of Nonlinear Optical Physics and Materials, 2018, 27, 1850005.	1.8	39
185	Localized Airy Wave Packets in a Self-Defocusing Kerr Medium. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	2
186	Vector matter waves in two-component Bose-Einstein condensates with spatially modulated nonlinearities. Europhysics Letters, 2018, 121, 34004.	2.0	2
187	Vector vortex solitons in two-component Bose–Einstein condensates with modulated nonlinearities and a harmonic trap. Journal of Modern Optics, 2018, 65, 1542-1548.	1.3	2
188	Optical soliton perturbation with resonant nonlinear SchrĶdinger's equation having full nonlinearity by modified simple equation method. Optik, 2018, 160, 33-43.	2.9	51
189	Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik, 2018, 160, 24-32.	2.9	161
190	Optical soliton perturbation with complex Ginzburg–Landau equation using trial solution approach. Optik, 2018, 160, 44-60.	2.9	47
191	Hamiltonian perturbation of optical solitons with parabolic law nonlinearity using three integration methodologies. Optik, 2018, 160, 248-254.	2.9	11
192	Optical soliton perturbation with full nonlinearity for Kundu–Eckhaus equation by extended trial function scheme. Optik, 2018, 160, 17-23.	2.9	24
193	Chirped solitons in optical metamaterials with parabolic law nonlinearity by extended trial function method. Optik, 2018, 160, 92-99.	2.9	13
194	Optical solitons with differential group delay by trial equation method. Optik, 2018, 160, 116-123.	2.9	24
195	Optical solitons to Lakshmanan-Porsezian-Daniel model for three nonlinear forms. Optik, 2018, 160, 197-202.	2.9	36
196	Analysis of optical solitons in nonlinear negative-indexed materials with anti-cubic nonlinearity. Optical and Quantum Electronics, 2018, 50, 1.	3.3	43
197	Optical soliton perturbation with full nonlinearity for Gerdjikov–Ivanov equation by trial equation method. Optik, 2018, 157, 1214-1218.	2.9	43
198	Optical solitons for Gerdjikov–Ivanov model by extended trial equation scheme. Optik, 2018, 157, 1241-1248.	2.9	24

#	Article	IF	CITATIONS
199	Optical soliton perturbation with Gerdjikov–Ivanov equation by modified simple equation method. Optik, 2018, 157, 1235-1240.	2.9	52
200	Chirped optical solitons of Chen–Lee–Liu equation by extended trial equation scheme. Optik, 2018, 156, 999-1006.	2.9	47
201	Optical soliton perturbation with full nonlinearity by trial equation method. Optik, 2018, 157, 1366-1375.	2.9	36
202	Optical solitons with Lakshmanan–Porsezian–Daniel model using a couple of integration schemes. Optik, 2018, 158, 705-711.	2.9	67
203	Optical soliton perturbation for Gerdjikov–Ivanov equation by extended trial equation method. Optik, 2018, 158, 747-752.	2.9	28
204	Dispersive optical solitons with differential group delay by extended trial equation method. Optik, 2018, 158, 790-798.	2.9	14
205	Conservation laws for perturbed solitons in optical metamaterials. Results in Physics, 2018, 8, 898-902.	4.1	9
206	Optical soliton perturbation with full nonlinearity for Kundu–Eckhaus equation by modified simple equation method. Optik, 2018, 157, 1376-1380.	2.9	82
207	Optical soliton perturbation for complex Ginzburg–Landau equation with modified simple equation method. Optik, 2018, 158, 399-415.	2.9	80
208	Optical Bloch Oscillations of a Dual Airy Beam. Annalen Der Physik, 2018, 530, 1700307.	2.4	4
209	Resonant optical soliton perturbation with anti-cubic nonlinearity by extended trial function method. Optik, 2018, 156, 784-790.	2.9	16
210	Bright, dark and W-shaped solitons with extended nonlinear SchrĶdinger's equation for odd and even higher-order terms. Superlattices and Microstructures, 2018, 114, 53-61.	3.1	44
211	Optical soliton perturbation with exotic non-Kerr law nonlinearities. Optik, 2018, 158, 1370-1379.	2.9	11
212	Chirped dispersive bright and singular optical solitons with Schrödinger–Hirota equation. Optik, 2018, 168, 192-195.	2.9	13
213	Solitons in optical metamaterials having parabolic law nonlinearity with detuning effect and Raman scattering. Optik, 2018, 164, 606-609.	2.9	4
214	Optical soliton perturbation of Fokas–Lenells equation with two integration schemes. Optik, 2018, 165, 111-116.	2.9	36
215	Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution. Optik, 2018, 165, 233-239.	2.9	49
216	Optical solitons with differential group delay for coupled Fokas–Lenells equation using two integration schemes. Optik, 2018, 165, 74-86.	2.9	121

#	Article	IF	CITATIONS
217	Optical soliton perturbation with Fokas–Lenells equation using three exotic and efficient integration schemes. Optik, 2018, 165, 288-294.	2.9	119
218	Optical solitons having weak non-local nonlinearity by two integration schemes. Optik, 2018, 164, 380-384.	2.9	61
219	Optical soliton perturbation with fractional temporal evolution by extended G′/G-expansion method. Optik, 2018, 161, 301-320.	2.9	14
220	Optical solitons with modified extended direct algebraic method for quadratic-cubic nonlinearity. Optik, 2018, 162, 161-171.	2.9	34
221	Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov's method. Optik, 2018, 164, 303-310.	2.9	18
222	Optical solitons in parabolic law medium with weak non-local nonlinearity by extended trial function method. Optik, 2018, 163, 56-61.	2.9	14
223	Optical soliton perturbation for Radhakrishnan–Kundu–Lakshmanan equation with a couple of integration schemes. Optik, 2018, 163, 126-136.	2.9	128
224	Novel singular solitons in optical metamaterials for self-steepening effect. Optik, 2018, 154, 545-550.	2.9	9
225	Chirped <mml:math <br="" altimg="si3.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi>w</mml:mi></mml:math> -shaped optical solitons of Chen–Lee–Liu equation. Optik, 2018, 155, 208-212.	2.9	33
226	Optical solitons and conservation law of Kundu–Eckhaus equation. Optik, 2018, 154, 551-557.	2.9	139
227	Dark ring soliton in two-dimensional nonlinear self-defocusing medium. Optik, 2018, 156, 447-452.	2.9	6
228	Resonant optical solitons with parabolic and dual-power laws by semi-inverse variational principle. Journal of Modern Optics, 2018, 65, 179-184.	1.3	51
229	Embedded solitons with χ(2) and χ(3) nonlinear susceptibilities by extended trial equation method. Optik, 2018, 154, 1-9.	2.9	10
230	Gray and black optical solitons with quintic nonlinearity. Optik, 2018, 154, 354-359.	2.9	11
231	Insight into the Interactions of Amyloid βâ€Sheets with Graphene Flakes: Scrutinizing the Role of Aromatic Residues in Amyloids that Interact with Graphene. ChemPhysChem, 2018, 19, 1226-1233.	2.1	7
232	Perturbed resonant 1-soliton solution with anti-cubic nonlinearity by Riccati-Bernoulli sub-ODE method. Optik, 2018, 156, 346-350.	2.9	13
233	Chirped dark and gray solitons for Chen–Lee–Liu equation in optical fibers and PCF. Optik, 2018, 155, 329-333.	2.9	33
234	Fractionâ€Dimensional Accessible Solitons in a Parityâ€Time Symmetric Potential. Annalen Der Physik, 2018, 530, 1700311.	2.4	10

#	Article	IF	CITATIONS
235	Optical soliton perturbation with full nonlinearity by extended trial function method. Optical and Quantum Electronics, 2018, 50, 1.	3.3	8
236	Rotating solitons supported by a spiral waveguide. Physical Review A, 2018, 98, .	2.5	6
237	Three-dimensional solitons in Bose-Einstein condensates with spin-orbit coupling and Bessel optical lattices. Physical Review A, 2018, 98, .	2.5	25
238	Optical soliton perturbation for Gerdjikov–Ivanov equation via two analytical techniques. Chinese Journal of Physics, 2018, 56, 2879-2886.	3.9	116
239	Dyakonov Surface Waves: Anisotropy-Enabling Confinement on the Edge. , 2018, , .		3
240	Reversible Olefin Addition to Extended Lattices of a Nickel–Selenium Framework. Journal of Physical Chemistry C, 2018, 122, 22424-22434.	3.1	2
241	Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms. Chinese Journal of Physics, 2018, 56, 1990-1998.	3.9	37
242	Vortex solitons produced in spatially modulated linear and nonlinear refractive index waveguides. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 410.	2.1	3
243	Solitons in optical metamaterials with anti-cubic nonlinearity. European Physical Journal Plus, 2018, 133, 1.	2.6	35
244	Stationary optical solitons with nonlinear group velocity dispersion by extended trial function scheme. Optik, 2018, 171, 529-542.	2.9	14
245	Vortex solitons in Bose–Einstein condensates with inhomogeneous attractive nonlinearities and a trapping potential. Applied Mathematics Letters, 2018, 86, 173-178.	2.7	4
246	Sequel to stationary optical solitons with nonlinear group velocity dispersion by extended trial function scheme. Optik, 2018, 172, 636-650.	2.9	8
247	Sub pico-second chirp-free optical solitons with Kaup-Newell equation using a couple of strategic algorithms. Optik, 2018, 172, 766-771.	2.9	24
248	Controllable optical rogue waves via nonlinearity management. Optics Express, 2018, 26, 7587.	3.4	24
249	Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas–Lenells equation. Chaos, Solitons and Fractals, 2018, 114, 275-280.	5.1	51
250	Stability properties of a thin relativistic beam propagation in a magnetized plasma. European Physical Journal D, 2018, 72, 1.	1.3	1
251	Optical soliton perturbation with Kundu–Eckhaus equation by exp(â^'i•(ξ))-expansion scheme and G′/G2-expansion method. Optik, 2018, 172, 79-85.	2.9	18
252	Chirped singular and combo optical solitons for Gerdjikov–Ivanov equation using three integration forms. Optik, 2018, 172, 144-149.	2.9	10

#	Article	IF	CITATIONS
253	Optical solitons with polarization-mode dispersion for coupled Fokas–Lenells equation with two forms of integration architecture. Optical and Quantum Electronics, 2018, 50, 1.	3.3	20
254	Nonlinear Airy Light Bullets in a 3D Selfâ€Đefocusing Medium. Annalen Der Physik, 2018, 530, 1800059.	2.4	11
255	Propagation properties of dipole-managed solitons through an inhomogeneous cubic–quintic–septic medium. Optics Communications, 2018, 425, 64-70.	2.1	51
256	Chirped singular solitons for Chen-Lee-Liu equation in optical fibers and PCF. Optik, 2018, 157, 156-160.	2.9	39
257	Optical soliton solutions to Fokas-lenells equation using some different methods. Optik, 2018, 173, 21-31.	2.9	132
258	Optical soliton perturbation with differential group delay and parabolic law nonlinearity using exp(â~Ĩ•(ξ))-expansion method. Optik, 2018, 172, 826-831.	2.9	2
259	Conservation laws for optical solitons with Chen–Lee–Liu equation. Optik, 2018, 174, 195-198.	2.9	42
260	Reduced magneto-hydrodynamic theory of coherent magnetic chains in the solar wind. Journal of Plasma Physics, 2018, 84, .	2.1	2
261	Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using exp(â^ĭŀ(ξ))-expansion method. Optik, 2018, 170, 555-560.	2.9	34
262	Optical solitons with polarization mode dispersion for Lakshmanan–Porsezian–Daniel model by the method of undetermined coefficients. Optik, 2018, 171, 114-119.	2.9	28
263	The fractional dimensional spatiotemporal accessible solitons supported by PT-symmetric complex potential. Annals of Physics, 2017, 378, 432-439.	2.8	2
264	Dispersive optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik, 2017, 136, 451-461.	2.9	56
265	Dark and singular dispersive optical solitons of Schrödinger–Hirota equation by modified simple equation method. Optik, 2017, 136, 445-450.	2.9	50
266	Nematicons in liquid crystals by modified simple equation method. Nonlinear Dynamics, 2017, 88, 2863-2872.	5.2	36
267	Peak-height formula for higher-order breathers of the nonlinear SchrĶdinger equation on nonuniform backgrounds. Physical Review E, 2017, 95, 012211.	2.1	12
268	Optical solitons with DWDM technology and four-wave mixing. Superlattices and Microstructures, 2017, 107, 254-266.	3.1	36
269	Nematicons in liquid crystals by extended trial equation method. Journal of Nonlinear Optical Physics and Materials, 2017, 26, 1750005.	1.8	67
270	Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices and Microstructures, 2017, 107, 197-218.	3.1	108

#	Article	IF	CITATIONS
271	Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds. Nonlinear Dynamics, 2017, 89, 1637-1649.	5.2	14
272	Nanoscale wear of graphene and wear protection by graphene. Carbon, 2017, 120, 137-144.	10.3	63
273	Optical solitons in nonlinear negative-index materials with quadratic-cubic nonlinearity. Superlattices and Microstructures, 2017, 109, 176-182.	3.1	24
274	Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. Optik, 2017, 142, 73-76.	2.9	120
275	Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 143, 131-134.	2.9	108
276	Optical solitons in DWDM system by extended trial equation method. Optik, 2017, 141, 157-167.	2.9	61
277	Chirped optical solitons in nano optical fibers with dual-power law nonlinearity. Optik, 2017, 142, 77-81.	2.9	39
278	Nonparaxial Accelerating Electron Beams. IEEE Journal of Quantum Electronics, 2017, 53, 1-6.	1.9	0
279	Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 139, 16-19.	2.9	95
280	Transport properties in the photonic superâ€honeycomb lattice — a hybrid fermionic and bosonic system. Annalen Der Physik, 2017, 529, 1600258.	2.4	34
281	Dispersive optical solitons in DWDM systems. Optik, 2017, 132, 210-215.	2.9	29
282	Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study. Nanotechnology, 2017, 28, 495706.	2.6	1
283	The virial theorem and ground state energy estimates of nonlinear Schrödinger equations in \$\$mathbb {R}^2\$\$ R 2 with square root and saturable nonlinearities in nonlinear optics. Calculus of Variations and Partial Differential Equations, 2017, 56, 1.	1.7	9
284	Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers. Scientific Reports, 2017, 7, 12186.	3.3	83
285	Unveiling the Link Between Fractional Schrödinger Equation and Light Propagation in Honeycomb Lattice. Annalen Der Physik, 2017, 529, 1700149.	2.4	50
286	Edge States in Dynamical Superlattices. ACS Photonics, 2017, 4, 2250-2256.	6.6	21
287	Dipole solitons in an extended nonlinear SchrĶdinger's equation with higher-order even and odd terms. Optik, 2017, 145, 644-649.	2.9	19
288	Conservation laws for cubic–quartic optical solitons in Kerr and power law media. Optik, 2017, 145, 650-654.	2.9	127

#	Article	IF	CITATIONS
289	Hybrid visible-light responsive Al2O3 particles. Chemical Physics Letters, 2017, 685, 416-421.	2.6	14
290	Tamm plasmon modes on semi-infinite metallodielectric superlattices. Scientific Reports, 2017, 7, 3746.	3.3	3
291	Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal, 2017, 23, 11046-11053.	3.3	12
292	Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations. Optik, 2017, 145, 14-17.	2.9	122
293	Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 145, 18-21.	2.9	107
294	Parallel propagation of dispersive optical solitons by extended trial equation method. Optik, 2017, 144, 565-572.	2.9	19
295	Cubic–quartic optical solitons in Kerr and power law media. Optik, 2017, 144, 357-362.	2.9	134
296	Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method. Superlattices and Microstructures, 2017, 111, 487-498.	3.1	52
297	Comment on "Spatial optical solitons in highly nonlocal media― Physical Review A, 2017, 95, .	2.5	2
298	Optical solitons for Lakshmanan–Porsezian–Daniel model with spatio-temporal dispersion using the method of undetermined coefficients. Optik, 2017, 144, 115-123.	2.9	56
299	Dark and singular optical solitons with spatio-temporal dispersion using modified simple equation method. Optik, 2017, 130, 324-331.	2.9	46
300	Dark spatiotemporal optical solitary waves in self-defocusing nonlinear media. Nonlinear Dynamics, 2017, 87, 2171-2177.	5.2	6
301	Solitons in nonlinear directional couplers with optical metamaterials. Nonlinear Dynamics, 2017, 87, 427-458.	5.2	35
302	Spatiotemporal soliton clusters in strongly nonlocal media with variable potential coefficients. Nonlinear Dynamics, 2017, 87, 827-834.	5.2	33
303	Optical solitons and conservation laws with quadratic-cubic nonlinearity. Optik, 2017, 128, 63-70.	2.9	127
304	Bright optical solitons with Kerr law nonlinearity and fifth order dispersion. Optik, 2017, 128, 172-177.	2.9	33
305	Topological and singular soliton solution to Kundu–Eckhaus equation with extended Kudryashov's method. Optik, 2017, 128, 57-62.	2.9	49
306	Dipole solitons in optical metamaterials with Kerr law nonlinearity. Optik, 2017, 128, 71-76.	2.9	26

#	Article	IF	CITATIONS
307	Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma. Physica Scripta, 2017, 92, 124006.	2.5	2
308	Optical Bloch oscillation and Zener tunneling in the fractional SchrĶdinger equation. Scientific Reports, 2017, 7, 17872.	3.3	34
309	Interactions of Aromatic Residues in Amyloids: A Survey of Protein Data Bank Crystallographic Data. Crystal Growth and Design, 2017, 17, 6353-6362.	3.0	15
310	Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential. Optics Express, 2017, 25, 9094.	3.4	17
311	Resonant mode conversions and Rabi oscillations in a fractional SchrĶdinger equation. Optics Express, 2017, 25, 32401.	3.4	50
312	Optical Bloch oscillation and Zener tunneling in an atomic system. Optica, 2017, 4, 571.	9.3	41
313	Guided Self-Accelerating Airy Beams—A Mini-Review. Applied Sciences (Switzerland), 2017, 7, 341.	2.5	29
314	Graphene/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS</mml:mi> <mml:mn>2 heterostructures as templates for growing two-dimensional metals: Predictions from <i>ab initio</i> calculations. Physical Review Materials, 2017, 1, .</mml:mn></mml:msub></mml:math 	:mn>2.4	nl:msub>
315	Fungal diversity as influenced by soil characteristics. Zemdirbyste, 2017, 104, 305-310.	0.8	8
316	Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Optics Letters, 2017, 42, 446.	3.3	34
317	Super-sech soliton dynamics in optical metamaterials using collective variables. Facta Universitatis - Series Electronics and Energetics, 2017, 30, 39-48.	0.9	10
318	PT symmetry in a fractional SchrĶdinger equation. Laser and Photonics Reviews, 2016, 10, 526-531.	8.7	136
319	Spatiotemporal soliton supported by parity-time symmetric potential with competing nonlinearities. Europhysics Letters, 2016, 115, 14006.	2.0	9
320	Infrared supercontinuum generation in multiple quantum well nanostructures. Journal of Optics (United Kingdom), 2016, 18, 115001.	2.2	6
321	Airy-Tricomi-Gaussian compressed light bullets. European Physical Journal Plus, 2016, 131, 1.	2.6	8
322	Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Optik, 2016, 127, 7250-7257.	2.9	121
323	Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dynamics, 2016, 85, 1979-2016.	5.2	135
324	The sensitivity of water extractable soil organic carbon fractions to land use in three soil types. Archives of Agronomy and Soil Science, 2016, 62, 1654-1664.	2.6	19

#	Article	IF	CITATIONS
325	Roadmap on optical rogue waves and extreme events. Journal of Optics (United Kingdom), 2016, 18, 063001.	2.2	225
326	Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schrödinger equation with spatially modulated nonlinearities and potentials. Optics Express, 2016, 24, 10066.	3.4	21
327	Solitons in optical metamaterials with fractional temporal evolution. Optik, 2016, 127, 10879-10897.	2.9	43
328	Maximal intensity higher-order Akhmediev breathers of the nonlinear SchrĶdinger equation and their systematic generation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3625-3629.	2.1	20
329	Optical solitons and conservation laws with anti-cubic nonlinearity. Optik, 2016, 127, 12056-12062.	2.9	33
330	Raman solitons in nanoscale optical waveguides, with metamaterials, having polynomial law non-linearity. Journal of Modern Optics, 2016, 63, S32-S37.	1.3	17
331	Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik, 2016, 127, 10659-10669.	2.9	147
332	Dark and singular optical solitons with Kundu–Eckhaus equation by extended trial equation method and extended G′/G-expansion scheme. Optik, 2016, 127, 10490-10497.	2.9	110
333	Controllable circular Airy beams via dynamic linear potential. Optics Express, 2016, 24, 7495.	3.4	61
334	Diffraction-free beams in fractional SchrĶdinger equation. Scientific Reports, 2016, 6, 23645.	3.3	90
335	Soliton solutions to resonant nonlinear schrodinger's equation with time-dependent coefficients by modified simple equation method. Optik, 2016, 127, 11450-11459.	2.9	72
336	Optical solitons in birefringent fibers by extended trial equation method. Optik, 2016, 127, 11311-11325.	2.9	16
337	Optical solitons with higher order dispersions in parabolic law medium by trial solution approach. Optik, 2016, 127, 11306-11310.	2.9	17
338	Conservation laws for optical solitons in birefringent fibers and magneto-optic waveguides. Optik, 2016, 127, 11662-11673.	2.9	35
339	Fractional nonparaxial accelerating Talbot effect. Optics Letters, 2016, 41, 3273.	3.3	18
340	Spatiotemporal accessible solitons in fractional dimensions. Physical Review E, 2016, 94, 012216.	2.1	95
341	Coherent and Incoherent Nonparaxial Self-Accelerating Weber Beams. IEEE Photonics Journal, 2016, 8, 1-9.	2.0	3
342	Singular optical solitons in birefringent nano-fibers. Optik, 2016, 127, 8995-9000.	2.9	35

#	Article	IF	CITATIONS
343	Enhanced sheet conductivity of Langmuir–Blodgett assembled graphene thin films by chemical doping. 2D Materials, 2016, 3, 015002.	4.4	26
344	Exact solutions for the quintic nonlinear SchrĶdinger equation with time and space. Nonlinear Dynamics, 2016, 84, 251-259.	5.2	10
345	Linear modulational stability analysis of Ginzburg–Landau dissipative vortices. Optical and Quantum Electronics, 2016, 48, 1.	3.3	2
346	Reduction of power-dependent walk-off in bias-free nematic liquid crystals. Optical and Quantum Electronics, 2016, 48, 1.	3.3	0
347	Light bullet supported by parity-time symmetric potential with power-law nonlinearity. Nonlinear Dynamics, 2016, 84, 1877-1882.	5.2	17
348	Accessible solitons of fractional dimension. Annals of Physics, 2016, 368, 110-116.	2.8	65
349	Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic–quintic–septic nonlinearities. Optics Communications, 2016, 366, 362-369.	2.1	82
350	Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. Journal of Modern Optics, 2016, 63, 950-954.	1.3	95
351	Exact results for the jammed state of binary mixtures of superdisks on the plane. Physica A: Statistical Mechanics and Its Applications, 2016, 441, 93-99.	2.6	1
352	Planar versus three-dimensional growth of metal nanostructures at graphene. Carbon, 2016, 96, 216-222.	10.3	7
353	[INVITED] Soliton propagation through nanoscale waveguides in optical metamaterials. Optics and Laser Technology, 2016, 77, 177-186.	4.6	40
354	Dispersive Optical Solitons with Schr�dinger-Hirota Equation Using Undetermined Coefficients. Journal of Computational and Theoretical Nanoscience, 2016, 13, 5288-5293.	0.4	10
355	Optical Solitons in Nano-Fibers with Fractional Temporal Evolution. Journal of Computational and Theoretical Nanoscience, 2016, 13, 5361-5374.	0.4	22
356	Optical Solitons in Cascaded System by Extended Trial Function Method. Journal of Computational and Theoretical Nanoscience, 2016, 13, 5394-5398.	0.4	13
357	Wavelength Selective Supercontinuum Signal Generated from Photonic Crystal Fibers for Microscopic Object Detection. Journal of Nanoelectronics and Optoelectronics, 2016, 11, 497-505.	0.5	5
358	Nonparaxial self-accelerating beams in an atomic vapor with electromagnetically induced transparency. Optics Letters, 2016, 41, 5644.	3.3	11
359	Rogue waves in a two-component Manakov system with variable coefficients and an external potential. Physical Review E, 2015, 92, 053201.	2.1	37
360	Anatomy of the Akhmediev breather: Cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence. Physical Review E, 2015, 92, 063202.	2.1	35

#	Article	IF	CITATIONS
361	Super-Gaussian Solitons in Optical Metamaterials Using Collective Variables. Journal of Computational and Theoretical Nanoscience, 2015, 12, 5119-5124.	0.4	18
362	Singular and Topological Solitons in Optical Metamaterials by Kudryashov's Method and <i>G</i> ′ <i>/G</i> -Expansion Scheme. Journal of Computational and Theoretical Nanoscience, 2015, 12, 5630-5635.	0.4	3
363	Solitons in Optical Metamaterials with Trial Solution Approach and BĀ e klund Transform of Riccati Equation. Journal of Computational and Theoretical Nanoscience, 2015, 12, 5940-5948.	0.4	42
364	Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schr¶dinger equation and the Gross-Pitaevskii equation using a variational approach. Optics Express, 2015, 23, 10616.	3.4	7
365	Dual accelerating Airy–Talbot recurrence effect. Optics Letters, 2015, 40, 5742.	3.3	29
366	Bright and exotic solitons in optical metamaterials by semi-inverse variational principle. Journal of Nonlinear Optical Physics and Materials, 2015, 24, 1550042.	1.8	18
367	Density functional theory study of phonons in graphene doped with Li, Ca and Ba. Europhysics Letters, 2015, 112, 67006.	2.0	12
368	Exact solutions of the (2+1)-dimensional quintic nonlinear SchrĶdinger equation with variable coefficients. Nonlinear Dynamics, 2015, 80, 583-589.	5.2	23
369	Light bullets in coupled nonlinear SchrĶdinger equations with spatially modulated coefficients and Bessel trapping potential. Journal of Modern Optics, 2015, 62, 683-692.	1.3	2
370	Breather management in the derivative nonlinear SchrĶdinger equation with variable coefficients. Annals of Physics, 2015, 355, 313-321.	2.8	20
371	Influence of a gold substrate on the optical properties of graphene. Journal of Applied Physics, 2015, 117, .	2.5	12
372	Self-decelerating Airy-Bessel light bullets. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 175401.	1.5	16
373	Two-dimensional linear and nonlinear Talbot effect from rogue waves. Physical Review E, 2015, 91, 032916.	2.1	18
374	Semianalytical study of the propagation of an ultrastrong femtosecond laser pulse in a plasma with ultrarelativistic electron jitter. Physics of Plasmas, 2015, 22, 043110.	1.9	3
375	Giant parabolic nonlinearities at infrared in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si52.gif" display="inline" overflow="scroll"><mml:mi>i></mml:mi>-type three level multiple quantum wells. Annals of Physics. 2015. 361. 107-119.</mml:math 	2.8	10
376	2D optical rogue waves in self-focusing Kerr-type media with spatially modulated coefficients. Laser Physics, 2015, 25, 085402.	1.2	10
377	Two-dimensional dark solitons in diffusive nonlocal nonlinear media. Journal of Optics (India), 2015, 44, 172-177.	1.7	10
378	Photonic Floquet topological insulators in atomic ensembles. Laser and Photonics Reviews, 2015, 9, 331-338.	8.7	70

#	Article	IF	CITATIONS
379	Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. Optics Express, 2015, 23, 3708.	3.4	25
380	Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli's equation approach. Nonlinear Dynamics, 2015, 81, 1933-1949.	5.2	200
381	Beam splitter and combiner based on Bloch oscillation in a spatially modulated waveguide array. Journal of Optics (United Kingdom), 2015, 17, 045606.	2.2	2
382	Three-dimensional localized Airy-Laguerre-Gaussian wave packets in free space. Optics Express, 2015, 23, 23867.	3.4	48
383	Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential. Optics Express, 2015, 23, 10467.	3.4	128
384	Automatic Fourier transform and self-Fourier beams due to parabolic potential. Annals of Physics, 2015, 363, 305-315.	2.8	46
385	Optical solitons in nonlinear directional couplers with G′/G-expansion scheme. Journal of Nonlinear Optical Physics and Materials, 2015, 24, 1550017.	1.8	28
386	Nonautonomous vector matter waves in two-component Bose-Einstein condensates with combined time-dependent harmonic-lattice potential. Journal of Optics (United Kingdom), 2015, 17, 105605.	2.2	4
387	Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential. Optics Letters, 2015, 40, 3786.	3.3	58
388	Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor. Annals of Physics, 2015, 363, 114-121.	2.8	5
389	Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation. Physical Review Letters, 2015, 115, 180403.	7.8	254
390	Nematicons in Liquid Crystals. Journal of Computational and Theoretical Nanoscience, 2015, 12, 4667-4673.	0.4	12
391	Nonlinear Pulse Propagation in Optical Metamaterials. Journal of Computational and Theoretical Nanoscience, 2015, 12, 4837-4841.	0.4	9
392	Variational approach versus accessible soliton approximation in nonlocal, nonlinear media. Physica Scripta, 2014, T162, 014003.	2.5	5
393	Light bullets in three-dimensional complex Ginzburg-Landau equation with modulated Kummer-Gauss photonic lattice. Europhysics Letters, 2014, 108, 34001.	2.0	3
394	Dipole solitons in highly nonlocal nematic liquid crystals: finite size effects. Physica Scripta, 2014, T162, 014004.	2.5	0
395	Ground states of nonlinear SchrĶdinger systems with saturable nonlinearity in R2 for two counterpropagating beams. Journal of Mathematical Physics, 2014, 55, 011505.	1.1	10
396	Strain-enhanced superconductivity in Li-doped graphene. Europhysics Letters, 2014, 108, 67005.	2.0	38

#	Article	IF	CITATIONS
397	Interactions of incoherent localized beams in a photorefractive medium. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2258.	2.1	2
398	Variational and accessible soliton approximations to multidimensional solitons in highly nonlocal nonlinear media. Optics Express, 2014, 22, 31842.	3.4	5
399	Modulation instability of solutions to the complex Ginzburg–Landau equation. Physica Scripta, 2014, T162, 014002.	2.5	1
400	Controllable parabolic-cylinder optical rogue wave. Physical Review E, 2014, 90, 043201.	2.1	32
401	Nonlinear Talbot effect of rogue waves. Physical Review E, 2014, 89, 032902.	2.1	51
402	Three-dimensional nonparaxial accelerating beams from the transverse Whittaker integral. Europhysics Letters, 2014, 107, 34001.	2.0	9
403	Solitons in Optical Metamaterials by Functional Variable Method and First Integral Approach. Frequenz, 2014, 68, .	0.9	59
404	Three-dimensional Hermite-Bessel solitons in strongly nonlocal media with variable potential coefficients. Optics Communications, 2014, 313, 62-69.	2.1	32
405	Solitary and extended waves in the generalized sinh-Gordon equation with a variable coefficient. Nonlinear Dynamics, 2014, 76, 717-723.	5.2	10
406	Bright and dark solitons in optical metamaterials. Optik, 2014, 125, 3299-3302.	2.9	95
407	Breather solutions of the generalized nonlinear Schrödinger equation with spatially modulated parameters and a special external potential. European Physical Journal Plus, 2014, 129, 1.	2.6	16
408	An exact (2 + 1)-dimensional optical soliton with spatially modulated nonlinearity and an external potential. European Physical Journal D, 2014, 68, 1.	1.3	1
409	Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity. Annals of Physics, 2014, 351, 787-796.	2.8	16
410	Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media. Optics Express, 2014, 22, 7160.	3.4	149
411	Special two-soliton solution of the generalized Sine–Gordon equation with a variable coefficient. Applied Mathematics Letters, 2014, 38, 122-128.	2.7	17
412	Singular solitons in optical metamaterials by ansatz method and simplest equation approach. Journal of Modern Optics, 2014, 61, 1550-1555.	1.3	105
413	Accelerating Airy–Gauss–Kummer localized wave packets. Annals of Physics, 2014, 340, 171-178.	2.8	32
414	Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media. , 2014, , .		0

#	Article	IF	CITATIONS
415	Plasmonic enhancement of light trapping in photodetectors. Facta Universitatis - Series Electronics and Energetics, 2014, 27, 183-203.	0.9	2
416	Multicharged optical vortices induced in a dissipative atomic vapor system. Physical Review A, 2013, 88, .	2.5	13
417	Resonance solitons produced by azimuthal modulation in self-focusing and self-defocusing materials. Nonlinear Dynamics, 2013, 73, 2091-2102.	5.2	15
418	Vortex solitons in the (2 + 1)-dimensional nonlinear Schrödinger equation with variable diffraction and nonlinearity coefficients. Physica Scripta, 2013, 87, 045401.	2.5	5
419	Periodic soliton solutions of the nonlinear SchrĶdinger equation with variable nonlinearity and external parabolic potential. Optik, 2013, 124, 2397-2400.	2.9	16
420	Three-dimensional finite-energy Airy self-accelerating parabolic-cylinder light bullets. Physical Review A, 2013, 88, .	2.5	52
421	Accessible spatiotemporal parabolic-cylinder solitons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 075401.	1.5	4
422	Reply to "Comment on â€~Solitons in highly nonlocal nematic liquid crystals: Variational approach' ― Physical Review A, 2013, 87, .	2.5	5
423	Destruction of shape-invariant solitons in nematic liquid crystals by noise. Physical Review A, 2013, 87,	2.5	9
424	Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients. Physical Review E, 2013, 87, 065201.	2.1	74
425	Perturbed fundamental solitons in nonlocal uniaxial nematic liquid crystals. Optics Communications, 2013, 286, 309-312.	2.1	6
426	Fresnel diffraction patterns as accelerating beams. Europhysics Letters, 2013, 104, 34007.	2.0	7
427	Three-dimensional spatiotemporal vector solitary waves in coupled nonlinear SchrĶdinger equations with variable coefficients. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 113.	2.1	19
428	Soliton pair generation in the interactions of Airy and nonlinear accelerating beams. Optics Letters, 2013, 38, 4585.	3.3	156
429	Ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1036.	2.1	7
430	Defect-controlled transverse localization of light in disordered photonic lattices. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 898.	2.1	6
431	Solitary waves in the nonlinear SchrĶdinger equation with spatially modulated Bessel nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1276.	2.1	29
432	Light bullets in spatially modulated Laguerre–Gauss optical lattices. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2715.	2.1	9

#	Article	IF	CITATIONS
433	Engineered surface waves in hyperbolic metamaterials. Optics Express, 2013, 21, 19113.	3.4	71
434	Conservation and transfer of orbital angular momentum of light in optically induced photonic lattices. Journal of Optics (United Kingdom), 2012, 14, 075204.	2.2	1
435	Localized Spatial Soliton Excitations in (2 + 1)-Dimensional Nonlinear Schrödinger Equation with Variable Nonlinearity and an External Potential. Communications in Theoretical Physics, 2012, 57, 127-132.	2.5	5
436	Influence of a medium's nonlinearity on Anderson localization of light in optically induced photonic lattices. Optical Engineering, 2012, 51, 088001-1.	1.0	1
437	Anderson localization of light in PT-symmetric optical lattices. Optics Letters, 2012, 37, 4455.	3.3	43
438	Breathers in biased highly nonlocal uniaxial nematic liquid crystals. Physica Scripta, 2012, 85, 015403.	2.5	6
439	Solitons in highly nonlocal nematic liquid crystals: Variational approach. Physical Review A, 2012, 85, .	2.5	32
440	Anderson localization of light at the interface between linear and nonlinear dielectric media with an optically induced photonic lattice. Physical Review A, 2012, 85, .	2.5	21
441	Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice. Journal of Nanophotonics, 2012, 6, 063525.	1.0	17
442	Surface vortex solitons near boundaries of photonic lattices. Physica Scripta, 2012, T149, 014040.	2.5	0
443	Anderson localization of light in photonic lattices for dimensional crossover. Proceedings of SPIE, 2012, , .	0.8	Ο
444	Two-dimensional accessible solitons in PT-symmetric potentials. Nonlinear Dynamics, 2012, 70, 2027-2034.	5.2	68
445	Breather solutions to the nonlinear SchrĶdinger equation with variable coefficients and a linear potential. Physica Scripta, 2012, 86, 015402.	2.5	13
446	Using graphical processing units to solve the multidimensional Ginzburg–Landau equation. Physica Scripta, 2012, T149, 014036.	2.5	8
447	Optical vortices induced in nonlinear multilevel atomic vapors. Optics Letters, 2012, 37, 4507.	3.3	21
448	Disorder-induced localization of light near edges of nonlinear photonic lattices. Optics Communications, 2012, 285, 352-355.	2.1	3
449	Lateral beam shift at transmission through layered structures with negative index material. Optics Communications, 2012, 285, 1148-1154.	2.1	2
450	Three-dimensional Spatiotemporal Accessible Solitons in a PT-symmetric Potential. Journal of the Optical Society of Korea, 2012, 16, 425-431.	0.6	2

#	Article	IF	CITATIONS
451	Localized nonlinear wavepackets with radial–azimuthal modulated nonlinearity and an external potential. Physica Scripta, 2011, 84, 055001.	2.5	6
452	Self-trapping of scalar and vector dipole solitary waves in Kerr media. Physical Review A, 2011, 83, .	2.5	52
453	Analytical chirped solutions to the (3 <mml:math)="" etqq1<br="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML">Gross-Pitaevskii equation for various diffraction and potential functions. Physical Review E, 2011, 84, 016606.</mml:math>	1 0.7843 2.1	14 rgBT /Ov 10
454	Special soliton structures in the (2+1)-dimensional nonlinear SchrĶdinger equation with radially variable diffraction and nonlinearity coefficients. Physical Review E, 2011, 83, 036603.	2.1	34
455	Nondiffracting Bessel plasmons. Optics Express, 2011, 19, 19572.	3.4	23
456	Vortex solitons at the boundaries of photonic lattices. Optics Express, 2011, 19, 26232.	3.4	6
457	Light bullets in the spatiotemporal nonlinear Schrödinger equation with a variable negative diffraction coefficient. Physical Review A, 2011, 84, .	2.5	36
458	Three-dimensional spatiotemporal vector solitary waves. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 095403.	1.5	11
459	Anderson localization of counterpropagating beams in optically induced photonic lattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2593-2596.	0.8	0
460	Exact spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional nonlinear SchrĶdinger equation with linear potential. Physica Scripta, 2011, 83, 065001.	2.5	6
461	Exact traveling-wave and spatiotemporal soliton solutions to the generalized (<mmi:math) 0.784314="" 1="" etqq1="" ij="" r<br="">SchrĶdinger equation with polynomial nonlinearity of arbitrary order. Physical Review E, 2011, 83,</mmi:math)>	2.1	24
462	Transverse localization of light in nonlinear photonic lattices with dimensionality crossover. Physical Review A, 2011, 84, .	2.5	26
463	Anderson localization of light near boundaries of disordered photonic lattices. Physical Review A, 2011, 83, .	2.5	42
464	Solitary waves in the nonlinear Schrödinger equation with Hermite-Gaussian modulation of the local nonlinearity. Physical Review E, 2011, 84, 046611.	2.1	15
465	Analytical traveling-wave and solitary solutions to the generalized Gross-Pitaevskii equation with sinusoidal time-varying diffraction and potential. Physical Review E, 2011, 83, 036609.	2.1	15
466	Characteristics and classification of gleyic soils of Banat. Ratarstvo I Povrtarstvo, 2011, 48, 375-382.	0.5	8
467	Three-dimensional Bessel light bullets in self-focusing Kerr media. Physical Review A, 2010, 82, .	2.5	19
468	Three-dimensional spatiotemporal solitary waves in strongly nonlocal media. Optics Communications, 2010, 283, 5213-5217.	2.1	20

#	Article	IF	CITATIONS
469	Superpositions of Laguerre–Gaussian Beams in Strongly Nonlocal Left-handed Materials. Communications in Theoretical Physics, 2010, 53, 749-754.	2.5	4
470	Soliton tunneling in the nonlinear SchrĶdinger equation with variable coefficients and an external harmonic potential. Physical Review E, 2010, 81, 056604.	2.1	62
471	Spatiotemporal wave and soliton solutions to the generalized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <m< td=""><td>→2:1/mml:r</td><td>n<mark>ð</mark>3 < mmla</td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math 	→ 2:1 /mml:r	n <mark>ð</mark> 3 < mmla
472	Steady-state and dynamical Anderson localization of counterpropagating beams in two-dimensional photonic lattices. Physical Review A, 2010, 81, .	2.5	8
473	Traveling and solitary wave solutions to the one-dimensional Gross-Pitaevskii equation. Physical Review E, 2010, 81, 016605.	2.1	31
474	Self-Similar Hermite–Gaussian Spatial Solitons in Two-Dimensional Nonlocal Nonlinear Media. Communications in Theoretical Physics, 2010, 53, 937-942.	2.5	17
475	Traveling wave and soliton solutions of coupled nonlinear SchrĶdinger equations with harmonic potential and variable coefficients. Physical Review E, 2010, 82, 047601.	2.1	35
476	Counterpropagating nematicons in bias-free liquid crystals. Optics Express, 2010, 18, 3258.	3.4	40
477	Counterpropagating solitons at boundary of photonic lattices. Optics Letters, 2010, 35, 2355.	3.3	0
478	The variation of yield components in wheat (Triticum aestivum L.) in response to stressful growing conditions of alkaline soil. Genetika, 2010, 42, 545-555.	0.4	11
479	Two-Dimensional Spatial Solitons in Nematic Liquid Crystals. Communications in Theoretical Physics, 2009, 51, 324-330.	2.5	2
480	Kummer solitons in strongly nonlocal nonlinear media. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 296-298.	2.1	22
481	Exact spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional SchrĶdinger equation for both normal and anomalous dispersion. Optics Letters, 2009, 34, 1609.	3.3	39
482	Counterpropagating surface solitons in two-dimensional photorefractive lattices. Optics Express, 2009, 17, 21515.	3.4	1
483	Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media. Physical Review A, 2009, 79, .	2.5	70
484	Phenotypic reaction of wheat grown on different soil types. Genetika, 2009, 41, 169-177.	0.4	7
485	Spike stability parameters in wheat grown on solonetz soil. Genetika, 2009, 41, 199-205.	0.4	6
486	Counterpropagating pattern dynamics: From narrow to broad beams. Optics Communications, 2008, 281, 2291-2300.	2.1	3

#	Article	IF	CITATIONS
487	Counterpropagating beams in rotationally symmetric photonic lattices. Optical Materials, 2008, 30, 1173-1176.	3.6	4
488	Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrödinger equation with distributed coefficients. Physical Review A, 2008, 78, .	2.5	93
489	Analytical Light Builet Solutions to the Generalized Ammi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mo stretchy="false">(<mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo) t<="" td=""><td>ijΕ⊼®q1</td><td>10.176844314</td></mml:mo)></mml:mo 	ij Ε⊼® q1	10.176844314
490	Review Letters, 2006, 101, 125904. Two-dimensional Whittaker solitons in nonlocal nonlinear media. Physical Review A, 2008, 78, .	2.5	30
491	Robust three-dimensional spatial soliton clusters in strongly nonlocal media. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 025402.	1.5	45
492	Publisher's Note: Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrödinger equation with distributed coefficients [Phys. Rev. A 78 , 023821 (2008)]. Physical Review A, 2008, 78, .	2.5	15
493	Angular momentum transfer in optically induced photonic lattices. Physical Review A, 2007, 76, .	2.5	13
494	Quasi-stable propagation of vortices and soliton clusters in saturable Kerr media with square-root nonlinearity. Optics Communications, 2007, 279, 196-202.	2.1	11
495	<title>Dynamic instability of counterpropagating self-trapped beams in photorefractive media</title> ., 2006, , .		2
496	Dynamic instability of self-induced bidirectional waveguides in photorefractive media. Optics Letters, 2005, 30, 750.	3.3	13
497	Photonic applications of spatial photorefractive solitons - soliton lattices, bidirectional waveguides and waveguide couplers. , 2003, , .		1
498	Exact solution to four-wave mixing with complex couplings: reflection geometry. Optics Letters, 1996, 21, 321.	3.3	3
499	Oscillation versus amplification in double phase conjugation. Optics Communications, 1996, 131, 279-284.	2.1	2
500	Running transverse waves in optical phase conjugation. Physical Review A, 1996, 53, 4519-4527.	2.5	13
501	Photorefractive ring resonators with vectorial two-beam coupling: Theory and applications. Physical Review A, 1995, 52, 671-680.	2.5	4
502	Photorefractive ring oscillators. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 1028.	2.1	6
503	Symmetries of photorefractive four-wave mixing. , 1995, , 281-284.		0
504	Vectorial two-beam mixing in photorefractive crystals. Optics Communications, 1994, 109, 338-347.	2.1	5

#	Article	IF	CITATIONS
505	Unified method for solution of wave equations in photorefractive media. Journal of the Optical Society of America B: Optical Physics, 1994, 11, 481.	2.1	12
506	Exact solution to cross-polarization two-wave mixing in cubic photorefractive crystals. Journal of the Optical Society of America B: Optical Physics, 1994, 11, 1142.	2.1	0
507	Wave mixing in photorefractive crystals with saturable couplings: stable solutions and instabilities. Optics Communications, 1993, 96, 283-288.	2.1	0
508	Symmetries of photorefractive four-wave mixing. Physical Review A, 1992, 45, 5061-5064.	2.5	7
509	Chaos in photorefractive four-wave mixing with a single grating and a single interaction region. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 1204.	2.1	48
510	Multigrating optical phase conjugation: numerical results. Journal of the Optical Society of America B: Optical Physics, 1989, 6, 901.	2.1	13
511	New efficient algorithm for solution of the driven nonlinear SchrĶdinger equation. Computer Physics Communications, 1984, 32, 239-243.	7.5	0
512	A generalized nonlinear SchrĶdinger equation and the motion of inhomogeneous vortex filaments in a fluid. Physics Letters, Section A: General, Atomic and Solid State Physics, 1983, 99, 293-294.	2.1	2
513	Combined stimulated Raman scattering and continuum self-phase modulations. Physical Review A, 1980, 21, 1222-1224.	2.5	65
514	Mean-Field Theory of Ferromagnetic Superconductors. Physical Review Letters, 1979, 42, 1015-1019.	7.8	38
515	A solidâ€state solarâ€powered heat transfer device. Journal of Applied Physics, 1979, 50, 5682-5685.	2.5	1
516	Cubic–quartic optical soliton perturbation and conservation laws with Lakshmanan–Porsezian–Daniel model: Undetermined coefficients. Journal of Nonlinear Optical Physics and Materials, 0, , 2150007.	1.8	8