Patrick Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3651363/publications.pdf Version: 2024-02-01

DATDICK HUBED

#	Article	IF	CITATIONS
1	Future searches for light sterile neutrinos at nuclear reactors. Physical Review D, 2022, 105, .	4.7	2
2	Statistical significance of the sterile-neutrino hypothesis in the context of reactor and gallium data. Journal of High Energy Physics, 2022, 2022, .	4.7	27
3	Use of CEvNS to monitor spent nuclear fuel. Physical Review D, 2022, 105, .	4.7	3
4	Neutrino oscillations at JUNO, the Born rule, and Sorkin's triple path interference. Physical Review D, 2022, 105, .	4.7	2
5	Cerium Ruthenium Low-Energy Antineutrino Measurements for Safeguarding Military Naval Reactors. Physical Review Letters, 2022, 128, .	7.8	3
6	Sterile neutrinos and the global reactor antineutrino dataset. Journal of High Energy Physics, 2021, 2021, 1.	4.7	33
7	Sterile neutrino searches at tagged kaon beams. Physical Review D, 2021, 103, .	4.7	1
8	Review on Deep Neural Networks Applied to Low-Frequency NILM. Energies, 2021, 14, 2390.	3.1	62
9	Statistical interpretation of sterile neutrino oscillation searches at reactors. European Physical Journal C, 2021, 81, 1.	3.9	17
10	Passive Low-Energy Nuclear-Recoil Detection with Color Centers. Physical Review Applied, 2021, 16, .	3.8	4
11	Interference between the atmospheric and solar oscillation amplitudes. Physical Review D, 2020, 101, .	4.7	7
12	Reevaluating reactor antineutrino anomalies with updated flux predictions. Physical Review D, 2020, 101, .	4.7	23
13	Reactor neutrino applications and coherent elastic neutrino nucleus scattering. Physical Review D, 2020, 102, .	4.7	16
14	Effect of Sampling Rate on Photovoltaic Self-Consumption in Load Shifting Simulations. Energies, 2020, 13, 5393.	3.1	1
15	Observation of Reactor Antineutrinos with a Rapidly Deployable Surface-Level Detector. Physical Review Applied, 2020, 13, .	3.8	14
16	<i>Colloquium</i> : Neutrino detectors as tools for nuclear security. Reviews of Modern Physics, 2020, 92, .	45.6	42
17	Residential Power Traces for Five Houses: The iHomeLab RAPT Dataset. Data, 2020, 5, 17.	2.3	8
18	Particle physics origin of the 5ÂMeV bump in the reactor antineutrino spectrum?. Physical Review D, 2019, 99, .	4.7	14

PATRICK HUBER

#	Article	IF	CITATIONS
19	Neutrino-Based Tools for Nuclear Verification and Diplomacy in North Korea. Science and Global Security, 2019, 27, 15-28.	0.3	7
20	Prediction of domestic appliances usage based on electrical consumption. Energy Informatics, 2018, 1, .	2.3	6
21	Neutrino physics for Korean diplomacy. Science, 2018, 362, 649-650.	12.6	1
22	Poster abstract: Is the run-time of domestic appliances predictable?. Computer Science - Research and Development, 2018, 33, 241-243.	2.7	0
23	Determining Reactor Fuel Type from Continuous Antineutrino Monitoring. Physical Review Applied, 2017, 8, .	3.8	11
24	NEOS Data and the Origin of the 5ÂMeV Bump in the Reactor Antineutrino Spectrum. Physical Review Letters, 2017, 118, 042502.	7.8	51
25	Antineutrino Monitoring of Spent Nuclear Fuel. Physical Review Applied, 2017, 8, .	3.8	15
26	Demand response optimized heat pump control for service sector buildings. Computer Science - Research and Development, 2017, 32, 25-34.	2.7	2
27	Reactor antineutrino fluxes – Status and challenges. Nuclear Physics B, 2016, 908, 268-278.	2.5	32
28	Neutron Capture and the Antineutrino Yield from Nuclear Reactors. Physical Review Letters, 2016, 116, 122503.	7.8	18
29	Hints for LeptonicCPViolation or New Physics?. Physical Review Letters, 2016, 117, 031801.	7.8	50
30	Detection of Breeding Blankets Using Antineutrinos. Science and Global Security, 2016, 24, 114-130.	0.3	10
31	Antineutrino Reactor Safeguards: A Case Study of the DPRK 1994 Nuclear Crisis. Science and Global Security, 2015, 23, 20-47.	0.3	14
32	Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sector. Journal of High Energy Physics, 2014, 2014, 1.	4.7	16
33	Antineutrino Monitoring for Heavy Water Reactors. Physical Review Letters, 2014, 113, 042503.	7.8	41
34	Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering. Journal of High Energy Physics, 2014, 2014, 1.	4.7	97
35	Messengers of new physics. Nuclear Physics, Section B, Proceedings Supplements, 2013, 237-238, 370-373.	0.4	0
36	Systematic uncertainties in long-baseline neutrino oscillations for large <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>î,</mml:mi><mml:mn>13</mml:mn></mml:msub>. Physical Review D, 2013, 87, .</mml:math 	4.7	51

PATRICK HUBER

#	Article	IF	CITATIONS
37	Determination of antineutrino spectra from nuclear reactors. Physical Review C, 2011, 84, .	2.9	568
38	Optimization of the Neutrino Factory, revisited. Journal of High Energy Physics, 2011, 2011, 1.	4.7	31
39	Two experiments for the price of one? The role of the second oscillation maximum in long baseline neutrino experiments. Journal of High Energy Physics, 2011, 2011, 1.	4.7	21
40	A new approach to anti-neutrino running in long-baseline neutrino oscillation experiments. Journal of High Energy Physics, 2011, 2011, 1.	4.7	7
41	Potential measurement of the weak mixing angle with neutrino-electron scattering at low energy. Journal of High Energy Physics, 2011, 2011, 1.	4.7	7
42	LSND reloaded. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 696, 359-361.	4.1	13
43	Two experiments for the price of one? The role of the second oscillation maximum in long baseline neutrino experiments. , 2011, 2011, 1.		1
44	Constraining sterile neutrinos with a low energy beta-beam. Journal of High Energy Physics, 2010, 2010, 1.	4.7	18
45	Submarine neutrino communication. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 692, 268-271.	4.1	14
46	Exploring neutrino parameters with a beta-beam experiment from FNAL to DUSEL. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 693, 114-121.	4.1	2
47	Grazing Incidence Small Angle X-ray Scattering on Colloidal Crystals. Journal of Physical Chemistry B, 2010, 114, 12473-12479.	2.6	13
48	First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments. Journal of High Energy Physics, 2009, 2009, 044-044.	4.7	128
49	In Situ and Ex Situ SAXS Investigation of Colloidal Sedimentation onto Laterally Patterned Support. Langmuir, 2009, 25, 814-819.	3.5	5
50	A low energy neutrino factory with non-magnetic detectors. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 669, 294-300.	4.1	22
51	New features in the simulation of neutrino oscillation experiments with GLoBES 3.0. Computer Physics Communications, 2007, 177, 432-438.	7.5	461
52	Neutrino factory superbeam. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 655, 251-256.	4.1	10
53	Precision spectroscopy with reactor antineutrinos. Physical Review D, 2004, 70, .	4.7	60