List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3650384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavior of supramolecular cross-links formed by host-guest interactions in hydrogels responding to water contents. , 2022, 1, 100001.		10
2	Fabrication and mechanical properties of knitted dissimilar polymeric materials with movable cross-links. Molecular Systems Design and Engineering, 2022, 7, 733-745.	1.7	8
3	State- and water repellency-controllable molecular glass of pillar[5]arenes with fluoroalkyl groups by guest vapors. Chemical Science, 2022, 13, 4082-4087.	3.7	5
4	Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Materials, 2022, 14, .	3.8	33
5	One-Step Synthesis of Gelatin-Conjugated Supramolecular Hydrogels for Dynamic Regulation of Adhesion Contact and Morphology of Myoblasts. ACS Applied Polymer Materials, 2022, 4, 2595-2603.	2.0	5
6	Cellulose Nanofiber Composite Polymeric Materials with Reversible and Movable Cross-links and Evaluation of their Mechanical Properties. ACS Applied Polymer Materials, 2022, 4, 403-412.	2.0	13
7	Design of molecularly imprinted hydrogels with thermoresponsive drug binding sites. Journal of Materials Chemistry B, 2022, 10, 6644-6654.	2.9	6
8	Preparation of dual-cross network polymers by the knitting method and evaluation of their mechanical properties. NPG Asia Materials, 2022, 14, .	3.8	10
9	Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene. Polymer Journal, 2022, 54, 1213-1223.	1.3	5
10	Preparation and activity of ruthenium catalyst based on Î ² -cyclodextrin for ring-opening metathesis polymerization. Tetrahedron Letters, 2021, 63, 152712.	0.7	3
11	Dynamics of the Topological Network Formed by Movable Crosslinks: Effect of Sliding Motion on Dielectric and Viscoelastic Relaxation Behavior. Macromolecules, 2021, 54, 3321-3333.	2.2	16
12	Material Adhesion through Direct Covalent Bond Formation Assisted by Noncovalent Interactions. ACS Applied Polymer Materials, 2021, 3, 2189-2196.	2.0	7
13	Mechano-Responsive Hydrogels Driven by the Dissociation of a Host–Guest Complex. ACS Macro Letters, 2021, 10, 971-977.	2.3	11
14	Mechanical Properties with Respect to Water Content of Host–Guest Hydrogels. Macromolecules, 2021, 54, 8067-8076.	2.2	27
15	X-ray crystal structures of α-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–ε-caprolactone, and β-cyclodextrin–ε-caprolactam inclusion complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 93-99.	0.9	2
16	Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Science Advances, 2020, 6, .	4.7	61
17	Design and mechanical properties of supramolecular polymeric materials based on host–guest interactions: the relation between relaxation time and fracture energy. Polymer Chemistry, 2020, 11, 6811-6820.	1.9	19
18	Extremely Rapid Selfâ€Healable and Recyclable Supramolecular Materials through Planetary Ball Milling and Host–Guest Interactions. Advanced Materials, 2020, 32, e2002008.	11.1	54

#	Article	IF	CITATIONS
19	Supramolecular Biocomposite Hydrogels Formed by Cellulose and Host–Guest Polymers Assisted by Calcium Ion Complexes. Biomacromolecules, 2020, 21, 3936-3944.	2.6	14
20	Biofunctional hydrogels based on host–guest interactions. Polymer Journal, 2020, 52, 839-859.	1.3	45
21	Redox-responsive supramolecular polymeric networks having double-threaded inclusion complexes. Chemical Science, 2020, 11, 4322-4331.	3.7	30
22	Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chemical Communications, 2020, 56, 4381-4395.	2.2	107
23	Self-Healing Thermoplastic Polyurethane Linked via Host-Guest Interactions. Polymers, 2020, 12, 1393.	2.0	35
24	Bulk Copolymerization of Host–Guest Monomers with Liquid-Type Acrylamide Monomers for Supramolecular Materials Applications. ACS Applied Polymer Materials, 2020, 2, 1553-1560.	2.0	12
25	Citric Acid-Modified Cellulose-Based Tough and Self-Healable Composite Formed by Two Kinds of Noncovalent Bonding. ACS Applied Polymer Materials, 2020, 2, 2274-2283.	2.0	27
26	Preparation of hydrophilic polymeric materials with movable cross-linkers and their mechanical property. Polymer, 2020, 196, 122465.	1.8	20
27	Palladium nanoparticle loaded Î ² -cyclodextrin monolith as a flow reactor for concentration enrichment and conversion of pollutants based on molecular recognition. Chemical Communications, 2020, 56, 14408-14411.	2.2	12
28	Self-healing and shape-memory properties of polymeric materials cross-linked by hydrogen bonding and metal–ligand interactions. Polymer Chemistry, 2019, 10, 4519-4523.	1.9	28
29	Mechanical and self-recovery properties of supramolecular ionic liquid elastomers based on host–guest interactions and correlation with ionic liquid content. RSC Advances, 2019, 9, 22295-22301.	1.7	8
30	Supramolecular Elastomers with Movable Cross-Linkers Showing High Fracture Energy Based on Stress Dispersion. Macromolecules, 2019, 52, 6953-6962.	2.2	34
31	Self-Healing Alkyl Acrylate-Based Supramolecular Elastomers Cross-Linked via Host–Guest Interactions. Macromolecules, 2019, 52, 2659-2668.	2.2	83
32	Mechanical properties of supramolecular polymeric materials cross-linked by donor–acceptor interactions. Chemical Communications, 2019, 55, 3809-3812.	2.2	6
33	Preparation of Supramolecular Ionic Liquid Gels Based on Host–Guest Interactions and Their Swelling and Ionic Conductive Properties. Macromolecules, 2019, 52, 2932-2938.	2.2	23
34	Visible chiral discrimination via macroscopic selective assembly. Communications Chemistry, 2018, 1, .	2.0	23
35	Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines. Journal of the American Chemical Society, 2018, 140, 17308-17315.	6.6	156
36	Adhesion of Dissimilar Materials through Host-Guest Interactions and Its Re-adhesion Properties. Chemistry Letters, 2018, 47, 1255-1257.	0.7	10

#	Article	lF	CITATIONS
37	Control of the threading ratio of cyclic molecules in polyrotaxanes consisting of poly(ethylene) Tj ETQq1 1 0.7	84314,rgBT 2.2	/Oygrlock 1(
38	Formation of Inclusion Complexes of Poly(hexafluoropropyl ether)s with Cyclodextrins. Chemistry Letters, 2018, 47, 322-325.	0.7	3
39	Linear viscoelastic studies on a transient network formed by host–guest interaction. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1109-1117.	2.4	13
40	Mechanical Properties of Supramolecular Polymeric Materials Formed by Cyclodextrins as Host Molecules and Cationic Alkyl Guest Molecules on the Polymer Side Chain. Macromolecules, 2018, 51, 6318-6326.	2.2	34
41	A Photoresponsive Polymeric Actuator Topologically Cross-Linked by Movable Units Based on a [2]Rotaxane. Macromolecules, 2018, 51, 4688-4693.	2.2	60
42	Photo-stimuli responsive supramolecular materials using supramolecular machine. , 2018, , .		0
43	Functioning via host–guest interactions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 313-330.	0.9	22
44	Stimuli-responsive polymeric materials functioning via host–guest interactions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 88, 85-104.	0.9	22
45	Multifunctional Stimuli-Responsive Supramolecular Materials with Stretching, Coloring, and Self-Healing Properties Functionalized via Host–Guest Interactions. Macromolecules, 2017, 50, 4144-4150.	2.2	96
46	Supramolecular Materials Cross-Linked by Host–Guest Inclusion Complexes: The Effect of Side Chain Molecules on Mechanical Properties. Macromolecules, 2017, 50, 3254-3261.	2.2	72
47	Dynamic Mechano-Regulation of Myoblast Cells on Supramolecular Hydrogels Cross-Linked by Reversible Host-Guest Interactions. Scientific Reports, 2017, 7, 7660.	1.6	46
48	Movable Cross-Linked Polymeric Materials from Bulk Polymerization of Reactive Polyrotaxane Cross-Linker with Acrylate Monomers. Macromolecules, 2017, 50, 5695-5700.	2.2	54
49	Supramolecular Polymeric Materials Containing Cyclodextrins. Chemical and Pharmaceutical Bulletin, 2017, 65, 330-335.	0.6	29
50	Direct Adhesion between Materials Using Noncovalent Bond and Covalent Bond. Hyomen Kagaku, 2017, 38, 61-66.	0.0	0
51	Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent. Beilstein Journal of Organic Chemistry, 2016, 12, 2495-2502.	1.3	7
52	Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nature Chemistry, 2016, 8, 625-632.	6.6	366
53	Highly Flexible, Tough, and Selfâ€Healing Supramolecular Polymeric Materials Using Host–Guest Interaction. Macromolecular Rapid Communications, 2016, 37, 86-92.	2.0	207
54	Direct Adhesion of Dissimilar Materials Using Sonogashira Cross-coupling Reaction. Chemistry Letters, 2016, 45, 1250-1252.	0.7	10

#	Article	lF	CITATIONS
55	Self-Healing Materials Formed by Cross-Linked Polyrotaxanes with Reversible Bonds. CheM, 2016, 1, 766-775.	5.8	121
56	Direct Adhesion Between Dissimilar Materials Using Covalent Bond Formation. Journal of Japan Institute of Electronics Packaging, 2016, 19, 103-110.	0.0	0
5 7	Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel. Scientific Reports, 2015, 5, 16254.	1.6	8
58	Formation of Redox-Responsive Supramolecular Polymeric Materials Based on Host-Guest Interaction at Polymer Side Chain. Kobunshi Ronbunshu, 2015, 72, 573-581.	0.2	0
59	Adhesion Using the Covalent Bond Formation Reaction at the Soft Material Interface. Kobunshi Ronbunshu, 2015, 72, 590-596.	0.2	0
60	Selfâ€Healing, Expansion–Contraction, and Shapeâ€Memory Properties of a Preorganized Supramolecular Hydrogel through Host–Guest Interactions. Angewandte Chemie - International Edition, 2015, 54, 8984-8987.	7.2	454
61	Adhesion between Semihard Polymer Materials Containing Cyclodextrin and Adamantane Based on Host–Guest Interactions. Macromolecules, 2015, 48, 732-738.	2.2	81
62	Macroscopic Selfâ€Assembly Based on Complementary Interactions between Nucleobase Pairs. Chemistry - A European Journal, 2015, 21, 2770-2774.	1.7	26
63	Direct covalent bond formation between materials using copper(<scp>i</scp>)-catalyzed azide alkyne cycloaddition reactions. RSC Advances, 2015, 5, 56130-56135.	1.7	14
64	Supramolecular Catalysis. , 2015, , 2366-2372.		0
65	Polypropylene. , 2015, , 2043-2047.		Ο
66	Self-Healing Polymers. , 2015, , 2209-2214.		0
67	A metal–ion-responsive adhesive material via switching of molecular recognition properties. Nature Communications, 2014, 5, 4622.	5.8	140
68	Supramolecular Adhesives to Hard Surfaces: Adhesion Between Host Hydrogels and Guest Glass Substrates Through Molecular Recognition. Macromolecular Rapid Communications, 2014, 35, 1646-1652.	2.0	64
69	Redoxâ€Responsive Macroscopic Gel Assembly Based on Discrete Dual Interactions. Angewandte Chemie - International Edition, 2014, 53, 3617-3621.	7.2	115
70	pH- and Sugar-Responsive Gel Assemblies Based on Boronate–Catechol Interactions. ACS Macro Letters, 2014, 3, 337-340.	2.3	82
71	Supramolecular Polymeric Materials via Cyclodextrin–Guest Interactions. Accounts of Chemical Research, 2014, 47, 2128-2140.	7.6	751
72	A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction. Scientific Reports, 2014, 4, 6348.	1.6	15

#	Article	IF	CITATIONS
73	Stimuli-responsive Supramolecular Gel Actuators. Journal of the Japan Society for Precision Engineering, 2014, 80, 722-726.	0.0	0
74	Macromolecular Recognition and Macroscopic Interactions by Cyclodextrins. Chemical Record, 2013, 13, 420-431.	2.9	32
75	Ring-Opening Metathesis Polymerization by a Ru Phosphine Derivative of Cyclodextrin in Water. ACS Macro Letters, 2013, 2, 384-387.	2.3	24
76	Redoxâ€Generated Mechanical Motion of a Supramolecular Polymeric Actuator Based on Host–Guest Interactions. Angewandte Chemie - International Edition, 2013, 52, 5731-5735.	7.2	199
77	Preorganized Hydrogel: Selfâ€Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guestâ€Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups. Advanced Materials, 2013, 25, 2849-2853.	11.1	540
78	Highly Elastic Supramolecular Hydrogels Using Host–Guest Inclusion Complexes with Cyclodextrins. Macromolecules, 2013, 46, 4575-4579.	2.2	102
79	Macroscopic Self-Assembly Based on Molecular Recognition: Effect of Linkage between Aromatics and the Polyacrylamide Gel Scaffold, Amide versus Ester. Macromolecules, 2013, 46, 1939-1947.	2.2	40
80	Self-Healing Polymers. , 2013, , 1-6.		0
81	Reversible self-assembly of gels through metal-ligand interactions. Scientific Reports, 2013, 3, .	1.6	53
82	Novel Ring-Opening Polymerization^ ^mdash;Supramolecular Catalysts Using Cyclodextrins^ ^mdash;. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 503-514.	0.0	0
83	Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nature Communications, 2012, 3, 1270.	5.8	622
84	Temperature-Sensitive Macroscopic Assembly Based on Molecular Recognition. ACS Macro Letters, 2012, 1, 1083-1085.	2.3	56
85	Supramolecular hydrogels formed from poly(viologen) cross-linked with cyclodextrin dimers and their physical properties. Beilstein Journal of Organic Chemistry, 2012, 8, 1594-1600.	1.3	30
86	Switching of macroscopic molecular recognition selectivity using a mixed solvent system. Nature Communications, 2012, 3, 831.	5.8	104
87	Emission properties of cyclodextrin dimers linked with perylene diimide—effect of cyclodextrin tumbling. Polymer Journal, 2012, 44, 278-285.	1.3	24
88	Photoswitchable gel assembly based on molecular recognition. Nature Communications, 2012, 3, 603.	5.8	412
89	Macroscopic Observations of Molecular Recognition: Discrimination of the Substituted Position on the Naphthyl Group by Polyacrylamide Gel Modified with β-Cyclodextrin. Langmuir, 2011, 27, 13790-13795.	1.6	41
90	Redox-responsive self-healing materials formed from host–guest polymers. Nature Communications, 2011, 2, 511.	5.8	1,207

#	Article	IF	CITATIONS
91	Double-Threaded Dimer and Supramolecular Oligomer Formed by Stilbene Modified Cyclodextrin: Effect of Acyl Migration and Photostimuli. Journal of Organic Chemistry, 2011, 76, 492-499.	1.7	22
92	Self-Assembly of Gels through Molecular Recognition of Cyclodextrins: Shape Selectivity for Linear and Cyclic Guest Molecules. Macromolecules, 2011, 44, 2395-2399.	2.2	76
93	Photoresponsive Formation of Pseudo[2]rotaxane with Cyclodextrin Derivatives. Organic Letters, 2011, 13, 4356-4359.	2.4	26
94	pH Responsive [2]Rotaxanes with 6-Modified- $\hat{l}\pm$ -Cyclodextrins. Chemistry Letters, 2011, 40, 758-759.	0.7	8
95	Supramolecular Spherical β-Cyclodextrin32-dendrimer: Inclusion Properties and Supramolecular Structure. Chemistry Letters, 2011, 40, 742-743.	0.7	2
96	Photocontrollable Supramolecular Materials Formed by Cyclodextrins and Azobenzene Polymers. Kobunshi Ronbunshu, 2011, 68, 669-678.	0.2	3
97	Macroscopic self-assembly through molecular recognition. Nature Chemistry, 2011, 3, 34-37.	6.6	710
98	Selective Photoinduced Energy Transfer from a Thiophene Rotaxane to Acceptor. Organic Letters, 2011, 13, 672-675.	2.4	24
99	Photochemically Controlled Supramolecular Curdlan/Singleâ€Walled Carbon Nanotube Composite Gel: Preparation of Molecular Distaff by Cyclodextrin Modified Curdlan and Phase Transition Control. European Journal of Organic Chemistry, 2011, 2011, 2801-2806.	1.2	25
100	Artificial Molecular Clamp: A Novel Device for Synthetic Polymerases. Angewandte Chemie - International Edition, 2011, 50, 7524-7528.	7.2	75
101	Photocontrolled Size Changes of Doubly-threaded Dimer Based on an α-Cyclodextrin Derivative with Two Recognition Sites. Chemistry Letters, 2010, 39, 242-243.	0.7	11
102	A Molecular Reel: Shuttling of a Rotor by Tumbling of a Macrocycle. Journal of Organic Chemistry, 2010, 75, 1040-1046.	1.7	55
103	Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angewandte Chemie, 2010, 122, 7623-7626.	1.6	90
104	Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angewandte Chemie - International Edition, 2010, 49, 7461-7464.	7.2	407
105	Switching from <i>altro</i> -α-Cyclodextrin Dimer to <i>pseudo</i> [1]Rotaxane Dimer through Tumbling. Organic Letters, 2010, 12, 1284-1286.	2.4	52
106	Cyclodextrin-based supramolecular polymers. Chemical Society Reviews, 2009, 38, 875.	18.7	768
107	Face selective translation of a cyclodextrin ring along an axle. Chemical Communications, 2009, , 5515.	2.2	27
108	Social Self-Sorting: Alternating Supramolecular Oligomer Consisting of Isomers. Journal of the American Chemical Society, 2009, 131, 12339-12343.	6.6	86

#	Article	IF	CITATIONS
109	Nanospheres with Polymerization Ability Coated by Polyrotaxane. Journal of Organic Chemistry, 2009, 74, 1858-1863.	1.7	18
110	Supramolecular assemblies of oligothiophene derivatives bearing β-cyclodextrin. Synthetic Metals, 2009, 159, 977-981.	2.1	6
111	Polymeric Rotaxanes. Chemical Reviews, 2009, 109, 5974-6023.	23.0	837
112	Switching of polymerization activity of cinnamoyl-α-cyclodextrin. Organic and Biomolecular Chemistry, 2009, 7, 1646.	1.5	19
113	Stereoselective Complex Formation between Polybutadiene and Cyclodextrins in Bulk. Macromolecular Rapid Communications, 2008, 29, 910-913.	2.0	11
114	Singleâ€Molecule Imaging of Rotaxanes Immobilized on Glass Substrates: Observation of Rotary Movement. Angewandte Chemie - International Edition, 2008, 47, 6077-6079.	7.2	30
115	Branched supramolecular polymers formed by bifunctional cyclodextrin derivatives. Tetrahedron, 2008, 64, 8355-8361.	1.0	40
116	Construction of Chemicalâ€Responsive Supramolecular Hydrogels from Guestâ€Modified Cyclodextrins. Chemistry - an Asian Journal, 2008, 3, 687-695.	1.7	54
117	Switching between Supramolecular Dimer and Nonthreaded Supramolecular Self-Assembly of Stilbene Amide-α-Cyclodextrin by Photoirradiation. Journal of the American Chemical Society, 2008, 130, 5024-5025.	6.6	80
118	Relative Rotational Motion between $\hat{l}\pm$ -Cyclodextrin Derivatives and a Stiff Axle Molecule. Journal of Organic Chemistry, 2008, 73, 2496-2502.	1.7	31
119	Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly. Chemical Communications, 2008, , 456-458.	2.2	38
120	Molecular Puzzle Ring: <i>pseudo</i> [1]Rotaxane from a Flexible Cyclodextrin Derivative. Journal of the American Chemical Society, 2008, 130, 17062-17069.	6.6	45
121	Ring-Opening Polymerization of Cyclic Esters by Cyclodextrins. Accounts of Chemical Research, 2008, 41, 1143-1152.	7.6	58
122	Polymerization of Lactones and Lactides Initiated by Cyclodextrins. Kobunshi Ronbunshu, 2007, 64, 607-616.	0.2	9
123	Supramolecular Polymers Formed by Bifunctional Cyclodextrin Derivatives. Chemistry Letters, 2007, 36, 828-829.	0.7	12
124	Polymerization of Lactones Initiated by Cyclodextrins:Â Effects of Cyclodextrins on the Initiation and Propagation Reactions. Macromolecules, 2007, 40, 3154-3158.	2.2	52
125	Contraction of Supramolecular Double-Threaded Dimer Formed by α-Cyclodextrin with a Long Alkyl Chain. Organic Letters, 2007, 9, 1053-1055.	2.4	41
126	Preparation and Properties of Rotaxanes Formed by Dimethyl-β-cyclodextrin and Oligo(thiophene)s with β-Cyclodextrin Stoppers. Journal of Organic Chemistry, 2007, 72, 459-465.	1.7	55

#	Article	IF	CITATIONS
127	An Artificial Molecular Chaperone:  Poly- <i>pseudo</i> -rotaxane with an Extensible Axle. Journal of the American Chemical Society, 2007, 129, 14452-14457.	6.6	57
128	Thermal and Photochemical Switching of Conformation of Poly(ethylene glycol)-Substituted Cyclodextrin with an Azobenzene Group at the Chain End. Journal of the American Chemical Society, 2007, 129, 6396-6397.	6.6	146
129	Self-Threading and Dethreading Dynamics of Poly(ethylene glycol)-Substituted Cyclodextrins with Different Chain Lengths. Macromolecules, 2007, 40, 3256-3262.	2.2	26
130	Chemically-Responsive Solâ^'Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins. Journal of the American Chemical Society, 2007, 129, 4878-4879.	6.6	246
131	External Stimulus-Responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer. Journal of the American Chemical Society, 2007, 129, 12630-12631.	6.6	148
132	Face-Selective [2]- and [3]Rotaxanes: Kinetic Control of the Threading Direction of Cyclodextrins. Chemistry - A European Journal, 2007, 13, 7091-7098.	1.7	54
133	A Chemical-Responsive Supramolecular Hydrogel from Modified Cyclodextrins. Angewandte Chemie - International Edition, 2007, 46, 5144-5147.	7.2	170
134	Cyclodextrin-grafted poly(phenylene ethynylene) with chemically-responsive properties. Chemical Communications, 2006, , 3702.	2.2	50
135	Selection between Pinching-Type and Supramolecular Polymer-Type Complexes by α-Cyclodextrinâ^'β-Cyclodextrin Hetero-Dimer and Hetero-Cinnamamide Guest Dimers. Journal of Organic Chemistry, 2006, 71, 4878-4883.	1.7	28
136	Self-Threading of a Poly(ethylene glycol) Chain in a Cyclodextrin-Ring:Â Control of the Exchange Dynamics by Chain Length. Journal of the American Chemical Society, 2006, 128, 8994-8995.	6.6	46
137	Formation of Chiral Supramolecular Polymer Based on Modified Cyclodextrin by Host-Guest Interactions. Kobunshi Ronbunshu, 2006, 63, 306-314.	0.2	0
138	Polymer formation utilizing â€~crisscross' addition (crisscross addition polymerization) of acetaldehyde azine and 1,4-phenylene diisocyanate. Polymer, 2006, 47, 501-505.	1.8	8
139	Spectroscopic study on the interaction of cyclodextrins with naphthyl groups attached to poly(acrylamide) backbone. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 13-19.	2.0	18
140	Cyclodextrin-Based Supramolecular Polymers. Advances in Polymer Science, 2006, , 1-43.	0.4	125
141	Complex Formation of Cyclodextrins with Various Thiophenes and their Polymerization in Water: Preparation of Poly-pseudo-rotaxanes containing Poly(thiophene)s. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 45-53.	1.6	22
142	Syntheses of group 4 transition metal complexes bearing 2-pyridinethiolate ligands and their catalytic activities for ethylene polymerization. Polymer, 2006, 47, 5762-5774.	1.8	9
143	Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules. Chemistry Letters, 2005, 34, 320-321.	0.7	15
144	Kinetic Control of Threading of Cyclodextrins onto Axle Molecules. Journal of the American Chemical Society, 2005, 127, 12186-12187.	6.6	100

#	Article	IF	CITATIONS
145	Supramolecular Polymers Formed from \hat{l}^2 -Cyclodextrins Dimer Linked by Poly(ethylene glycol) and Guest Dimers. Macromolecules, 2005, 38, 3724-3730.	2.2	122
146	Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility. Macromolecules, 2005, 38, 5897-5904.	2.2	162
147	Chiral Supramolecular Polymers Formed by Hostâ 'Guest Interactions. Journal of the American Chemical Society, 2005, 127, 2984-2989.	6.6	196
148	Complex Formation between Polyisoprene and Cyclodextrins. Macromolecular Rapid Communications, 2004, 25, 1159-1162.	2.0	44
149	Bis(amido)titanium complexes having chelating diaryloxo ligands bridged by sulfur or methylene and their catalytic behaviors for ring-opening polymerization of cyclic esters. Journal of Organometallic Chemistry, 2004, 689, 612-619.	0.8	72
150	One-Pot Synthesis of γ-Cyclodextrin Polyrotaxane:  Trap of γ-Cyclodextrin by Photodimerization of Anthracene-Capped pseudo-Polyrotaxane. Macromolecules, 2004, 37, 7075-7077.	2.2	64
151	Crystal Structure of the Complex of β-Cyclodextrin with Bithiophene and Their Oxidative Polymerization in Water. Macromolecules, 2004, 37, 3962-3964.	2.2	40
152	Cyclodextrin-Initiated Polymerization of Cyclic Esters in Bulk: Formation of Polyester-Tethered Cyclodextrins. Journal of the American Chemical Society, 2004, 126, 13588-13589.	6.6	84
153	Complex Formation and Gelation between Copolymers Containing Pendant Azobenzene Groups and Cyclodextrin Polymers. Chemistry Letters, 2004, 33, 890-891.	0.7	124
154	Inclusion Complex Formation and Hydrolysis of Lactones by Cyclodextrins. Chemistry Letters, 2003, 32, 1122-1123.	0.7	20
155	Polymerizations of Cyclic Esters Catalyzed by Titanium Complexes Having Chalcogen-Bridged Chelating Diaryloxo Ligands. Macromolecules, 2002, 35, 7538-7544.	2.2	135
156	Synthesis of novel oxo complexes of tungsten and molybdenum with various chalcogen-bridged chelating bis(aryloxo) ligands and their catalytic behavior for ring-opening metathesis polymerization. Journal of Organometallic Chemistry, 2002, 651, 114-123.	0.8	17
157	Synthesis of cis-dichloride complexes of Group 6 transition metals bearing alkyne and chalcogen-bridged chelating bis(aryloxo) ligands as catalyst precursors for ring-opening metathesis polymerization. Journal of Organometallic Chemistry, 2002, 654, 74-82.	0.8	11
158	Steric isomerization of alkyne–dialkyltungsten complexes with a chelating diaryloxo ligand: crystal structures of Cs- and C1-W(ŀ2-RCĩ†CR)[2,2′-S(4-Me-6-R′C6H2O)2](CH2SiMe3)2. Journal of Organometallic Chemistry, 2002, 664, 234-244.	: 0.8	7
159	Synthesis of a Novel Oxotungsten(VI) Complex Having a Chelating Bis(aryloxo) Ligand and Its Catalytic Behavior for Ring-Opening Metathesis Polymerization. Chemistry Letters, 2001, 30, 488-489.	0.7	6
160	Preparation of Novel Thermally Stable Polyurea by the Cationic Ring-Opening Isomerization Polycyclic Pseudourea. Macromolecules, 1998, 31, 6822-6827.	2.2	8
161	Time–strain inseparability in multiaxial stress relaxation of supramolecular gels formed <i>via</i> host–guest interactions. Soft Matter, 0, , .	1.2	2