
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3649632/publications.pdf Version: 2024-02-01



FMILY P PAVELELD

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil<br>Organisms. Annual Review of Earth and Planetary Sciences, 2007, 35, 541-576.                                                          | 11.0 | 351       |
| 2  | Cranial design and function in a large theropod dinosaur. Nature, 2001, 409, 1033-1037.                                                                                                                                                | 27.8 | 219       |
| 3  | A virtual world of paleontology. Trends in Ecology and Evolution, 2014, 29, 347-357.                                                                                                                                                   | 8.7  | 205       |
| 4  | The shapes of bird beaks are highly controlled by nondietary factors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5352-5357.                                                           | 7.1  | 192       |
| 5  | Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: A combined geometric morphometric and finite element modeling approach. Journal of Morphology, 2008, 269, 840-864.                         | 1.2  | 162       |
| 6  | Cranial mechanics and feeding in Tyrannosaurus rex. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1451-1459.                                                                                                     | 2.6  | 146       |
| 7  | Functional Evolution of the Feeding System in Rodents. PLoS ONE, 2012, 7, e36299.                                                                                                                                                      | 2.5  | 146       |
| 8  | Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature, 2014, 512, 303-305.                                                                                                                     | 27.8 | 125       |
| 9  | The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds*. Evolution; International Journal of Organic Evolution, 2019, 73, 422-435.                                                  | 2.3  | 117       |
| 10 | Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature, 2011,<br>476, 206-209.                                                                                                               | 27.8 | 116       |
| 11 | Using finite-element analysis to investigate suture morphology: A case study using large carnivorous<br>dinosaurs. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary<br>Biology, 2005, 283A, 349-365. | 2.0  | 107       |
| 12 | Open data and digital morphology. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170194.                                                                                                                        | 2.6  | 103       |
| 13 | Combining geometric morphometrics and finite element analysis with evolutionary modeling:<br>towards a synthesis. Journal of Vertebrate Paleontology, 2016, 36, e1111225.                                                              | 1.0  | 97        |
| 14 | Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning. Journal of Anatomy, 2009, 215, 555-576.                                                                    | 1.5  | 90        |
| 15 | Aspects of comparative cranial mechanics in the theropod dinosaurs Coelophysis, Allosaurus and Tyrannosaurus. Zoological Journal of the Linnean Society, 2005, 144, 309-316.                                                           | 2.3  | 89        |
| 16 | Adaptive plasticity in the mouse mandible. BMC Evolutionary Biology, 2014, 14, 85.                                                                                                                                                     | 3.2  | 89        |
| 17 | Functional morphology of spinosaur â€~crocodile-mimic' dinosaurs. Journal of Vertebrate<br>Paleontology, 2007, 27, 892-901.                                                                                                            | 1.0  | 84        |
| 18 | Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131940.                                            | 2.6  | 83        |

EMILY R RAYFIELD

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity. Journal of Anatomy, 2011, 219, 696-709.                                               | 1.5  | 82        |
| 20 | Cranial performance in the Komodo dragon ( <i>Varanus komodoensis</i> ) as revealed by highâ€resolution 3â€Ð finite element analysis. Journal of Anatomy, 2008, 212, 736-746.                               | 1.5  | 79        |
| 21 | Sensitivity and <i>ex vivo</i> validation of finite element models of the domestic pig cranium. Journal of Anatomy, 2011, 219, 456-471.                                                                     | 1.5  | 76        |
| 22 | Morphospace occupation in thalattosuchian crocodylomorphs: skull shape variation, species delineation and temporal patterns. Palaeontology, 2009, 52, 1057-1097.                                            | 2.2  | 72        |
| 23 | Digital dissection – using contrastâ€enhanced computed tomography scanning to elucidate hard―and<br>softâ€ŧissue anatomy in the Common Buzzard <i>Buteo buteo</i> . Journal of Anatomy, 2014, 224, 412-431. | 1.5  | 72        |
| 24 | 3D Camouflage in an Ornithischian Dinosaur. Current Biology, 2016, 26, 2456-2462.                                                                                                                           | 3.9  | 72        |
| 25 | The Endocranial Anatomy of Therizinosauria and Its Implications for Sensory and Cognitive Function.<br>PLoS ONE, 2012, 7, e52289.                                                                           | 2.5  | 70        |
| 26 | Cranial biomechanics underpins high sauropod diversity in resource-poor environments. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142114.                                         | 2.6  | 63        |
| 27 | Pedal Claw Curvature in Birds, Lizards and Mesozoic Dinosaurs – Complicated Categories and<br>Compensating for Mass-Specific and Phylogenetic Control. PLoS ONE, 2012, 7, e50555.                           | 2.5  | 63        |
| 28 | Ecological and evolutionary implications of dinosaur feeding behaviour. Trends in Ecology and Evolution, 2006, 21, 217-224.                                                                                 | 8.7  | 62        |
| 29 | Disparities in the analysis of morphological disparity. Biology Letters, 2020, 16, 20200199.                                                                                                                | 2.3  | 60        |
| 30 | Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110,<br>20657-20662.     | 7.1  | 59        |
| 31 | The consequences of craniofacial integration for the adaptive radiations of Darwin's finches and<br>Hawaiian honeycreepers. Nature Ecology and Evolution, 2020, 4, 270-278.                                 | 7.8  | 57        |
| 32 | Establishing a framework for archosaur cranial mechanics. Paleobiology, 2008, 34, 494-515.                                                                                                                  | 2.0  | 55        |
| 33 | Inter-Vertebral Flexibility of the Ostrich Neck: Implications for Estimating Sauropod Neck Flexibility.<br>PLoS ONE, 2013, 8, e72187.                                                                       | 2.5  | 55        |
| 34 | The Response of Cranial Biomechanical Finite Element Models to Variations in Mesh Density.<br>Anatomical Record, 2011, 294, 610-620.                                                                        | 1.4  | 54        |
| 35 | Feeding Mechanics in Spinosaurid Theropods and Extant Crocodilians. PLoS ONE, 2013, 8, e65295.                                                                                                              | 2.5  | 53        |
| 36 | Morphological evolution of the mammalian jaw adductor complex. Biological Reviews, 2017, 92,<br>1910-1940.                                                                                                  | 10.4 | 51        |

3

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The role of miniaturization in the evolution of the mammalian jaw and middle ear. Nature, 2018, 561, 533-537.                                                                         | 27.8 | 51        |
| 38 | Utility and validity of Middle and Late Triassic †̃land vertebrate faunachrons'. Journal of Vertebrate<br>Paleontology, 2009, 29, 80-87.                                              | 1.0  | 50        |
| 39 | Cranial biomechanics of Diplodocus (Dinosauria, Sauropoda): testing hypotheses of feeding behaviour<br>in an extinct megaherbivore. Die Naturwissenschaften, 2012, 99, 637-643.       | 1.6  | 50        |
| 40 | The sharpest tools in the box? Quantitative analysis of conodont element functional morphology.<br>Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2849-2854.     | 2.6  | 49        |
| 41 | A Geographical Information System (GIS) study of Triassic vertebrate biochronology. Geological<br>Magazine, 2005, 142, 327-354.                                                       | 1.5  | 48        |
| 42 | Cranial anatomy of <i>Erlikosaurus andrewsi</i> (Dinosauria, Therizinosauria): new insights based on digital reconstruction. Journal of Vertebrate Paleontology, 2014, 34, 1263-1291. | 1.0  | 46        |
| 43 | Feeding biomechanics in <i>Acanthostega</i> and across the fish–tetrapod transition. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132689.                    | 2.6  | 45        |
| 44 | Withinâ€guild dietary discrimination from 3â€≺scp>D textural analysis of tooth microwear in insectivorous mammals. Journal of Zoology, 2013, 291, 249-257.                            | 1.7  | 44        |
| 45 | Strain in the ostrich mandible during simulated pecking and validation of specimen-specific finite element models. Journal of Anatomy, 2011, 218, 47-58.                              | 1.5  | 43        |
| 46 | Comparative cranial myology and biomechanics of <i>Plateosaurus</i> and <i>Camarasaurus</i> and evolution of the sauropod feeding apparatus. Palaeontology, 2016, 59, 887-913.        | 2.2  | 43        |
| 47 | Hydrodynamic constraints on the evolution and ecology of planktic foraminifera. Marine<br>Micropaleontology, 2014, 106, 69-78.                                                        | 1.2  | 42        |
| 48 | Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development. Journal of Biomechanics, 2015, 48, 3112-3122.            | 2.1  | 41        |
| 49 | Models in palaeontological functional analysis. Biology Letters, 2012, 8, 119-122.                                                                                                    | 2.3  | 40        |
| 50 | Descriptive Anatomy and Three-Dimensional Reconstruction of the Skull of the Early Tetrapod<br>Acanthostega gunnari Jarvik, 1952. PLoS ONE, 2015, 10, e0118882.                       | 2.5  | 39        |
| 51 | The multifactorial nature of beak and skull shape evolution in parrots and cockatoos<br>(Psittaciformes). BMC Evolutionary Biology, 2019, 19, 104.                                    | 3.2  | 37        |
| 52 | Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal<br>morphogenesis. Osteoarthritis and Cartilage, 2016, 24, 1940-1950.             | 1.3  | 34        |
| 53 | Retrodeformation and muscular reconstruction of ornithomimosaurian dinosaur crania. PeerJ, 2015, 3, e1093.                                                                            | 2.0  | 34        |
| 54 | Comparative Feeding Biomechanics of <i>Lystrosaurus</i> and the Generalized Dicynodont<br><i>Oudenodon</i> . Anatomical Record, 2009, 292, 862-874.                                   | 1.4  | 33        |

| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Functional Morphometric Analysis of the Furcula in Mesozoic Birds. PLoS ONE, 2012, 7, e36664.                                                                                                                                                                                          | 2.5 | 33        |
| 56 | Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation.<br>Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210069.                                                                                                               | 2.6 | 33        |
| 57 | Convergence and functional evolution of longirostry in crocodylomorphs. Palaeontology, 2019, 62, 867-887.                                                                                                                                                                              | 2.2 | 32        |
| 58 | Validation experiments on finite element models of an ostrich ( <i>Struthio camelus</i> ) cranium.<br>PeerJ, 2015, 3, e1294.                                                                                                                                                           | 2.0 | 32        |
| 59 | Functional implications of dicynodont cranial suture morphology. Journal of Morphology, 2010, 271, 705-728.                                                                                                                                                                            | 1.2 | 31        |
| 60 | Finite element, occlusal, microwear and microstructural analyses indicate that conodont microstructure is adapted to dental function. Palaeontology, 2014, 57, 1059-1066.                                                                                                              | 2.2 | 30        |
| 61 | Functional anatomy and feeding biomechanics of a giant <scp>U</scp> pper <scp>J</scp> urassic<br>pliosaur ( <scp>R</scp> eptilia: <scp>S</scp> auropterygia) from <scp>W</scp> eymouth <scp>B</scp> ay,<br><scp>D</scp> orset, <scp>UK</scp> . Journal of Anatomy, 2014, 225, 209-219. | 1.5 | 30        |
| 62 | Translating taxonomy into the evolution of conodont feeding ecology. Geology, 2016, 44, 247-250.                                                                                                                                                                                       | 4.4 | 30        |
| 63 | Modeling the effects of cingula structure on strain patterns and potential fracture in tooth enamel.<br>Journal of Morphology, 2011, 272, 50-65.                                                                                                                                       | 1.2 | 29        |
| 64 | Linking evolution and development: Synchrotron Radiation Xâ€ <b>r</b> ay tomographic microscopy of planktic<br>foraminifers. Palaeontology, 2013, 56, 741-749.                                                                                                                         | 2.2 | 28        |
| 65 | Herbivorous dinosaur jaw disparity and its relationship to extrinsic evolutionary drivers.<br>Paleobiology, 2017, 43, 15-33.                                                                                                                                                           | 2.0 | 28        |
| 66 | Craniodental functional evolution in sauropodomorph dinosaurs. Paleobiology, 2017, 43, 435-462.                                                                                                                                                                                        | 2.0 | 26        |
| 67 | Morphological disparity in theropod jaws: comparing discrete characters and geometric morphometrics. Palaeontology, 2020, 63, 283-299.                                                                                                                                                 | 2.2 | 26        |
| 68 | Functional tests of the competitive exclusion hypothesis for multituberculate extinction. Royal<br>Society Open Science, 2019, 6, 181536.                                                                                                                                              | 2.4 | 24        |
| 69 | Neurocranial osteology and systematic relationships<br>of <i>Varanus</i> ( <i>Megalania</i> ) <i>prisca</i> Owen, 1859 (Squamata: Varanidae). Zoological Journal<br>of the Linnean Society, 2009, 155, 445-457.                                                                        | 2.3 | 22        |
| 70 | Biomechanical Evaluation of Different Musculoskeletal Arrangements in <i>Psittacosaurus</i> and<br>Implications for Cranial Function. Anatomical Record, 2017, 300, 49-61.                                                                                                             | 1.4 | 22        |
| 71 | The use of extruded finite-element models as a novel alternative to tomography-based models: a case study using early mammal jaws. Journal of the Royal Society Interface, 2019, 16, 20190674.                                                                                         | 3.4 | 22        |
| 72 | Jaw shape and mechanical advantage are indicative of diet in Mesozoic mammals. Communications<br>Biology, 2021, 4, 242.                                                                                                                                                                | 4.4 | 22        |

| #  | Article                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Virtual experiments, physical validation: dental morphology at the intersection of experiment and theory. Journal of the Royal Society Interface, 2012, 9, 1846-1855.                                                                                                                       | 3.4  | 21        |
| 74 | Computed tomography, anatomical description and threeâ€dimensional reconstruction of the lower<br>jaw of <i><scp>E</scp>usthenopteron foordi </i> <scp>W</scp> hiteaves, 1881 from the<br><scp>U</scp> pper <scp>D</scp> evonian of <scp>C</scp> anada. Palaeontology, 2015, 58, 1031-1047. | 2.2  | 21        |
| 75 | Evolution of jaw disparity in fishes. Palaeontology, 2018, 61, 847-854.                                                                                                                                                                                                                     | 2.2  | 21        |
| 76 | Ontogenetic endocranial shape change in alligators and ostriches and implications for the<br>development of the nonâ€avian dinosaur endocranium. Anatomical Record, 2021, 304, 1759-1775.                                                                                                   | 1.4  | 21        |
| 77 | The importance of wave exposure on the structural integrity of rhodoliths. Journal of Experimental<br>Marine Biology and Ecology, 2018, 503, 109-119.                                                                                                                                       | 1.5  | 19        |
| 78 | Decelerated dinosaur skull evolution with the origin of birds. PLoS Biology, 2020, 18, e3000801.                                                                                                                                                                                            | 5.6  | 18        |
| 79 | Mechanics of the scarf premaxilla-nasal suture in the snout ofLystrosaurus. Journal of Vertebrate<br>Paleontology, 2010, 30, 1283-1288.                                                                                                                                                     | 1.0  | 17        |
| 80 | What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur. Journal of the Royal Society Interface, 2012, 9, 351-361.                                                                                                                     | 3.4  | 17        |
| 81 | Increasing morphological disparity and decreasing optimality for jaw speed and strength during the radiation of jawed vertebrates. Science Advances, 2022, 8, eabl3644.                                                                                                                     | 10.3 | 16        |
| 82 | Testing microstructural adaptation in the earliest dental tools. Biology Letters, 2012, 8, 952-955.                                                                                                                                                                                         | 2.3  | 15        |
| 83 | Ontogenetic constraints on foraminiferal test construction. Evolution & Development, 2017, 19, 157-168.                                                                                                                                                                                     | 2.0  | 13        |
| 84 | Digital cranial endocast of <i>Riograndia guaibensis</i> (Late Triassic, Brazil) sheds light on the evolution of the brain in non-mammalian cynodonts. Historical Biology, 0, , 1-18.                                                                                                       | 1.4  | 13        |
| 85 | Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics. Journal of Visualized Experiments, 2016, , .                                                                                                                                                                      | 0.3  | 12        |
| 86 | What Does Musculoskeletal Mechanics Tell Us About Evolution of Form and Function in Vertebrates?.<br>Fascinating Life Sciences, 2019, , 45-70.                                                                                                                                              | 0.9  | 12        |
| 87 | Osteological redescription of the Late Triassic sauropodomorph dinosaur <i>Thecodontosaurus<br/>antiquus</i> based on new material from Tytherington, southwestern England. Journal of Vertebrate<br>Paleontology, 2020, 40, e1770774.                                                      | 1.0  | 12        |
| 88 | Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich<br>(Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and<br>Semi-Aquatic Birds. PLoS ONE, 2015, 10, e0143834.                                          | 2.5  | 12        |
| 89 | Was the Devonian placoderm <i>Titanichthys</i> a suspension feeder?. Royal Society Open Science, 2020, 7, 200272.                                                                                                                                                                           | 2.4  | 11        |
| 90 | Niche partitioning shaped herbivore macroevolution through the early Mesozoic. Nature Communications, 2021, 12, 2796.                                                                                                                                                                       | 12.8 | 11        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Prey attack by a large theropod dinosaur. Nature, 2002, 416, 387-388.                                                                                                                                                 | 27.8 | 10        |
| 92  | Divergent locomotor evolution in "giant―kangaroos: Evidence from foot bone bending resistances and microanatomy. Journal of Morphology, 2022, 283, 313-332.                                                           | 1.2  | 10        |
| 93  | Functional adaptation underpinned the evolutionary assembly of the earliest vertebrate skeleton.<br>Evolution & Development, 2014, 16, 354-361.                                                                       | 2.0  | 9         |
| 94  | Potential and limitations of finite element modelling in assessing structural integrity of coralline algae under future global change. Biogeosciences, 2015, 12, 5871-5883.                                           | 3.3  | 9         |
| 95  | Scaling and functional morphology in strigiform hind limbs. Scientific Reports, 2017, 7, 44920.                                                                                                                       | 3.3  | 9         |
| 96  | The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur <i>Thecodontosaurus antiquus</i> . Zoological Journal of the Linnean Society, 2021, 193, 541-562.                                         | 2.3  | 9         |
| 97  | Craniofacial development illuminates the evolution of nightbirds (Strisores). Proceedings of the<br>Royal Society B: Biological Sciences, 2021, 288, 20210181.                                                        | 2.6  | 9         |
| 98  | The diversity of Triassic South American sphenodontians: a new basal form, clevosaurs, and a revision of rhynchocephalian phylogeny. Journal of Systematic Palaeontology, 2021, 19, 787-820.                          | 1.5  | 9         |
| 99  | Morphological Change During The Ontogeny Of The Planktic Foraminifera. Journal of<br>Micropalaeontology, 0, , 2014-017.                                                                                               | 3.6  | 8         |
| 100 | A digital dissection of two teleost fishes: comparative functional anatomy of the cranial<br>musculoskeletal system in pike ( Esox lucius ) and eel ( Anguilla anguilla ). Journal of Anatomy, 2019,<br>235, 189-204. | 1.5  | 8         |
| 101 | Biomechanical properties of the jaws of two species of <i>Clevosaurus</i> and a reanalysis of rhynchocephalian dentary morphospace. Palaeontology, 2020, 63, 919-939.                                                 | 2.2  | 8         |
| 102 | Cephalic biomechanics underpins the evolutionary success of trilobites. Palaeontology, 2021, 64, 519-530.                                                                                                             | 2.2  | 8         |
| 103 | Distal Humeral Morphology Indicates Locomotory Divergence in Extinct Giant Kangaroos. Journal of<br>Mammalian Evolution, 2022, 29, 27-41.                                                                             | 1.8  | 8         |
| 104 | Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph<br><i>Thecodontosaurus antiquus</i> . Royal Society Open Science, 2022, 9, 211356.                                             | 2.4  | 7         |
| 105 | Prey attack by a large theropod dinosaur. Nature, 2002, 416, 388-388.                                                                                                                                                 | 27.8 | 6         |
| 106 | Climate, competition, and the rise of mosasauroid ecomorphological disparity. Palaeontology, 2022, 65, .                                                                                                              | 2.2  | 6         |
| 107 | Osteology and digital reconstruction of the skull of the early tetrapod <i>Whatcheeria deltae</i> .<br>Journal of Vertebrate Paleontology, 2021, 41, .                                                                | 1.0  | 5         |
| 108 | Cranial functional morphology of the pseudosuchian <i>Effigia</i> and implications for its ecological role in the Triassic. Anatomical Record, 2022, 305, 2435-2462.                                                  | 1.4  | 5         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Phylogenetic relationships of the European trilophosaurids <i>Tricuspisaurus thomasi</i> and <i>Variodens inopinatus</i> . Journal of Vertebrate Paleontology, 2021, 41, .                               | 1.0 | 5         |
| 110 | Testing for a dietary shift in the Early Cretaceous ceratopsian dinosaur <i>Psittacosaurus<br/>lujiatunensis</i> . Palaeontology, 2021, 64, 371-384.                                                     | 2.2 | 4         |
| 111 | What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur. Journal of the Royal Society Interface, 2014, 11, 20140700.                                | 3.4 | 2         |
| 112 | What makes an accurate and reliable subject-specific finite element model? A case study of an elephant<br>femur. Journal of the Royal Society Interface, 2014, 11, 20140854.                             | 3.4 | 2         |
| 113 | Testing the influence of crushing surface variation on seed-cracking performance among beak morphs of the African seedcracker <i>Pyrenestes ostrinus</i> . Journal of Experimental Biology, 2021, 224, . | 1.7 | 1         |