
Leopold Parts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3649594/publications.pdf Version: 2024-02-01

LEODOLD DADTS

#	Article	IF	CITATIONS
1	Live-cell microscopy or fluorescence anisotropy with budded baculoviruses—which way to go with measuring ligand binding to M ₄ muscarinic receptors?. Open Biology, 2022, 12, .	3.6	6
2	ArtSeg—Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations. Scientific Reports, 2022, 12, .	3.3	4
3	Genomic Epidemiology and Evolution of <i>Escherichia coli</i> in Wild Animals in Mexico. MSphere, 2021, 6, .	2.9	19
4	Natural variants suppress mutations in hundreds of essential genes. Molecular Systems Biology, 2021, 17, e10138.	7.2	13
5	Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images. SLAS Discovery, 2021, 26, 1125-1137.	2.7	16
6	Practical segmentation of nuclei in brightfield cell images with neural networks trained on fluorescently labelled samples. Journal of Microscopy, 2021, 284, 12-24.	1.8	6
7	Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes. MSystems, 2021, 6, e0034621.	3.8	6
8	Minimal genome-wide human CRISPR-Cas9 library. Genome Biology, 2021, 22, 40.	8.8	40
9	Type II and type IV toxin–antitoxin systems show different evolutionary patterns in the global Klebsiella pneumoniae population. Nucleic Acids Research, 2020, 48, 4357-4370.	14.5	14
10	JACKS: joint analysis of CRISPR/Cas9 knockout screens. Genome Research, 2019, 29, 464-471.	5.5	64
11	Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science, 2018, 359, 1533-1536.	12.6	157
12	Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Computational Biology, 2018, 14, e1006258.	3.2	127
13	SLING: a tool to search for linked genes in bacterial datasets. Nucleic Acids Research, 2018, 46, e128.	14.5	18
14	The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae. BMC Genomics, 2017, 18, 159.	2.8	58
15	Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning. G3: Genes, Genomes, Genetics, 2017, 7, 1385-1392.	1.8	130
16	Computational biology: deep learning. Emerging Topics in Life Sciences, 2017, 1, 257-274.	2.6	65
17	Predicting quantitative traits from genome and phenome with near perfect accuracy. Nature Communications, 2016, 7, 11512.	12.8	32
18	Deep learning for computational biology. Molecular Systems Biology, 2016, 12, 878.	7.2	1,059

LEOPOLD PARTS

#	Article	IF	CITATIONS
19	Powerful decomposition of complex traits in a diploid model. Nature Communications, 2016, 7, 13311.	12.8	34
20	Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age. G3: Genes, Genomes, Genetics, 2015, 5, 839-847.	1.8	7
21	Cenetic Interaction Scoring Procedure for Bacterial Species. Advances in Experimental Medicine and Biology, 2015, 883, 169-185.	1.6	2
22	Personalized medicine: from genotypes, molecular phenotypes and the quantified self, towards improved medicine. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2015, , 342-6.	0.7	12
23	Heritability and genetic basis of protein level variation in an outbred population. Genome Research, 2014, 24, 1363-1370.	5.5	51
24	gitter: A Robust and Accurate Method for Quantification of Colony Sizes From Plate Images. G3: Genes, Genomes, Genetics, 2014, 4, 547-552.	1.8	109
25	Genome-wide mapping of cellular traits using yeast. Yeast, 2014, 31, 197-205.	1.7	17
26	A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes. Molecular Biology and Evolution, 2014, 31, 872-888.	8.9	328
27	Global Analysis of DNA Methylation Variation in Adipose Tissue from Twins Reveals Links to Disease-Associated Variants in Distal Regulatory Elements. American Journal of Human Genetics, 2013, 93, 876-890.	6.2	330
28	High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population. Genetics, 2013, 195, 1141-1155.	2.9	164
29	Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biology, 2013, 14, R75.	9.6	263
30	SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Research, 2013, 41, W591-W596.	14.5	141
31	Inferring Genome-Wide Recombination Landscapes from Advanced Intercross Lines: Application to Yeast Crosses. PLoS ONE, 2013, 8, e62266.	2.5	29
32	PERSONALIZED MEDICINE: FROM GENOTYPES AND MOLECULAR PHENOTYPES TOWARDS THERAPY- SESSION INTRODUCTION. , 2013, 19, 224-8.		2
33	The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis. PLoS ONE, 2013, 8, e55272.	2.5	178
34	Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue. PLoS Genetics, 2012, 8, e1002704.	3.5	48
35	Patterns of Cis Regulatory Variation in Diverse Human Populations. PLoS Genetics, 2012, 8, e1002639.	3.5	439
36	Quantifying Selection Acting on a Complex Trait Using Allele Frequency Time Series Data. Molecular Biology and Evolution, 2012, 29, 1187-1197.	8.9	64

LEOPOLD PARTS

#	Article	IF	CITATIONS
37	Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nature Protocols, 2012, 7, 500-507.	12.0	799
38	Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nature Genetics, 2012, 44, 1084-1089.	21.4	701
39	Assessing the complex architecture of polygenic traits in diverged yeast populations. Molecular Ecology, 2011, 20, 1401-1413.	3.9	194
40	Revealing the genetic structure of a trait by sequencing a population under selection. Genome Research, 2011, 21, 1131-1138.	5.5	263
41	Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes. PLoS Genetics, 2011, 7, e1001276.	3.5	76
42	The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study. PLoS Genetics, 2011, 7, e1002003.	3.5	392
43	A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eQTL Studies. PLoS Computational Biology, 2010, 6, e1000770.	3.2	408
44	No Correlation Between Childhood Maltreatment and Telomere Length. Biological Psychiatry, 2010, 68, e21-e22.	1.3	70
45	Simultaneous assay of every <i>Salmonella</i> Typhi gene using one million transposon mutants. Genome Research, 2009, 19, 2308-2316.	5.5	544
46	Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast. PLoS Genetics, 2009, 5, e1000659.	3.5	46
47	Population genomics of domestic and wild yeasts. Nature, 2009, 458, 337-341.	27.8	1,391
48	Systematic discovery and characterization of fly microRNAs using 12 <i>Drosophila</i> genomes. Genome Research, 2007, 17, 1865-1879.	5.5	182
49	Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 2007, 450, 219-232.	27.8	573
50	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886