
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 2010, 4, 1340-1351.	4.4	3,154
2	The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22, 59-65.	2.3	2,075
3	Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Applied and Environmental Microbiology, 2009, 75, 1589-1596.	1.4	1,280
4	Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry, 1993, 25, 723-730.	4.2	1,222
5	Phospholipid Fatty Acid Composition, Biomass, and Activity of Microbial Communities from Two Soil Types Experimentally Exposed to Different Heavy Metals. Applied and Environmental Microbiology, 1993, 59, 3605-3617.	1.4	1,191
6	Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 2011, 43, 1621-1625.	4.2	916
7	Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry, 2003, 35, 955-963.	4.2	915
8	Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 1991, 14, 151-163.	0.7	802
9	Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 1989, 47, 335-379.	1.1	768
10	Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology, 2005, 52, 49-58.	1.3	569
11	Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos, 2000, 90, 279-294.	1.2	529
12	The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycological Research, 1995, 99, 623-629.	2.5	442
13	Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist, 2001, 151, 753-760.	3.5	420
14	Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biology and Biochemistry, 1995, 27, 229-240.	4.2	419
15	Comparison of factors limiting bacterial growth in different soils. Soil Biology and Biochemistry, 2007, 39, 2485-2495.	4.2	388
16	Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently. Applied and Environmental Microbiology, 2004, 70, 2966-2973.	1.4	375
17	Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiology Ecology, 2011, 78, 17-30.	1.3	353
18	Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests. Applied and Environmental Microbiology, 1996, 62, 420-428.	1.4	337

#	Article	IF	CITATIONS
19	Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 2007, 13, 28-39.	4.2	325
20	Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiology Ecology, 2007, 62, 258-267.	1.3	317
21	Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biology and Biochemistry, 2010, 42, 2276-2281.	4.2	316
22	Effect of Metal-Rich Sludge Amendments on the Soil Microbial Community. Applied and Environmental Microbiology, 1998, 64, 238-245.	1.4	313
23	Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biology and Biochemistry, 1996, 28, 55-63.	4.2	307
24	Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry, 2010, 42, 926-934.	4.2	296
25	Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biology and Biochemistry, 1999, 31, 1879-1887.	4.2	290
26	Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biology and Biochemistry, 2000, 32, 909-917.	4.2	283
27	Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biology and Biochemistry, 2001, 33, 1571-1574.	4.2	254
28	Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biology, 2009, 15, 2950-2957.	4.2	253
29	Decrease in soil microbial activity and biomasses owing to nitrogen amendments. Canadian Journal of Microbiology, 1983, 29, 1500-1506.	0.8	246
30	Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water, Air, and Soil Pollution, 1989, 47, 189-215.	1.1	245
31	Structure of the Microbial Communities in Coniferous Forest Soils in Relation to Site Fertility and Stand Development Stage. Microbial Ecology, 1999, 38, 168-179.	1.4	245
32	Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9. Soil Biology and Biochemistry, 2004, 36, 57-65.	4.2	232
33	Influence of Initial C/N Ratio on Chemical and Microbial Composition during Long Term Composting of Straw. Microbial Ecology, 2001, 41, 272-280.	1.4	228
34	The Use of Neutral Lipid Fatty Acids to Indicate the Physiological Conditions of Soil Fungi. Microbial Ecology, 2003, 45, 373-383.	1.4	225
35	Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil. Applied and Environmental Microbiology, 2009, 75, 3611-3620.	1.4	219
36	The microbial PLFA composition as affected by pH in an arable soil. Soil Biology and Biochemistry, 2010, 42, 516-520.	4.2	218

#	Article	IF	CITATIONS
37	Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Applied and Environmental Microbiology, 1996, 62, 2970-2977.	1.4	218
38	Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol. Soil Biology and Biochemistry, 2001, 33, 2011-2018.	4.2	210
39	Rapid Method of Determining Factors Limiting Bacterial Growth in Soil. Applied and Environmental Microbiology, 2001, 67, 1830-1838.	1.4	197
40	Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biology and Biochemistry, 2008, 40, 370-379.	4.2	197
41	Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soils in Sweden. Canadian Journal of Forest Research, 1989, 19, 323-328.	0.8	196
42	Soil Bacterial Biomass, Activity, Phospholipid Fatty Acid Pattern, and pH Tolerance in an Area Polluted with Alkaline Dust Deposition. Applied and Environmental Microbiology, 1992, 58, 4026-4031.	1.4	196
43	Drying–Rewetting Cycles Affect Fungal and Bacterial Growth Differently in an Arable Soil. Microbial Ecology, 2010, 60, 419-428.	1.4	191
44	Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs – a hypothesis based on field observations in boreal forest. New Phytologist, 2003, 160, 225-238.	3.5	189
45	Growth rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biology and Biochemistry, 1994, 26, 995-1001.	4.2	187
46	Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of Fatty Acid signatures. Applied and Environmental Microbiology, 1997, 63, 3531-3538.	1.4	181
47	Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiology Ecology, 1998, 27, 9-20.	1.3	180
48	Fungal and bacterial growth responses to N fertilization and pH in the 150-year â€~Park Grass' UK grassland experiment. FEMS Microbiology Ecology, 2011, 76, 89-99.	1.3	173
49	Structure of a Microbial Community in Soil after Prolonged Addition of Low Levels of Simulated Acid Rain. Applied and Environmental Microbiology, 1998, 64, 2173-2180.	1.4	169
50	Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiology Ecology, 2008, 65, 400-407.	1.3	167
51	Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biology and Biochemistry, 2010, 42, 48-55.	4.2	166
52	Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology and Biochemistry, 2008, 40, 2334-2343.	4.2	165
53	Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biology and Biochemistry, 2007, 39, 2173-2177.	4.2	164
54	The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22, 59-65.	2.3	164

#	Article	IF	CITATIONS
55	Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia, 2007, 153, 375-384.	0.9	156
56	Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biology and Biochemistry, 1997, 29, 1405-1415.	4.2	151
57	Multiple Heavy Metal Tolerance of Soil Bacterial Communities and Its Measurement by a Thymidine Incorporation Technique. Applied and Environmental Microbiology, 1994, 60, 2238-2247.	1.4	148
58	Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiology Ecology, 2008, 63, 350-358.	1.3	147
59	Thymidine incorporation into macromolecules of bacteria extracted from soil by homogenization-centrifugation. Soil Biology and Biochemistry, 1992, 24, 1157-1165.	4.2	144
60	Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biology and Biochemistry, 2013, 66, 188-192.	4.2	141
61	Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytologist, 2005, 165, 613-622.	3.5	138
62	Growth Rates of Bacterial Communities in Soils at Varying pH: A Comparison of the Thymidine and Leucine Incorporation Techniques. Microbial Ecology, 1998, 36, 316-327.	1.4	130
63	Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biology and Biochemistry, 2009, 41, 840-848.	4.2	124
64	Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Global Change Biology, 2009, 15, 2615-2625.	4.2	119
65	Evaluation of soil respiration characteristics to assess heavy metal effects on soil microorganisms using glutamic acid as a substrate. Soil Biology and Biochemistry, 1988, 20, 949-954.	4.2	118
66	Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biology and Biochemistry, 2009, 41, 2517-2526.	4.2	118
67	Prolonged drought changes the bacterial growth response to rewetting. Soil Biology and Biochemistry, 2015, 88, 314-322.	4.2	116
68	The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil– and cfu–PLFA techniques. Applied Soil Ecology, 2004, 25, 135-145.	2.1	115
69	Temperature adaptation of bacterial communities in experimentally warmed forest soils. Global Change Biology, 2012, 18, 3252-3258.	4.2	111
70	Microfungi and Microbial Activity Along a Heavy Metal Gradient. Applied and Environmental Microbiology, 1983, 45, 1829-1837.	1.4	109
71	Dynamics of a microbial community associated with manure hot spots as revealed by phospholipid fatty acid analyses. Applied and Environmental Microbiology, 1997, 63, 2224-2231.	1.4	109
72	Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	108

#	Article	IF	CITATIONS
73	Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiology Ecology, 2003, 45, 13-21.	1.3	105
74	Soil microbial recolonisation after a fire in a Mediterranean forest. Biology and Fertility of Soils, 2011, 47, 261-272.	2.3	103
75	The effects of glucose loading rates on bacterial and fungal growth inÂsoil. Soil Biology and Biochemistry, 2014, 70, 88-95.	4.2	103
76	Measurement of heavy metal tolerance of soil bacteria using thymidine incorporation into bacteria extracted after homogenization-centrifugation. Soil Biology and Biochemistry, 1992, 24, 1167-1172.	4.2	101
77	Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 1996, 28, 463-470.	4.2	98
78	Long-term manipulation of the microbes and microfauna of two subarctic heaths by addition of fungicide, bactericide, carbon and fertilizer. Soil Biology and Biochemistry, 2000, 32, 707-720.	4.2	95
79	Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield. Soil Biology and Biochemistry, 2011, 43, 1333-1340.	4.2	95
80	The Effect of Nitrogen and Carbon Supply on the Development of Soil Organism Populations and Pine Seedlings: A Microcosm Experiment. Oikos, 1978, 31, 153.	1.2	93
81	Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield. Soil Biology and Biochemistry, 2013, 61, 121-132.	4.2	92
82	Bacterial and fungal growth on different plant litter in Mediterranean soils: Effects of C/N ratio and soil pH. Applied Soil Ecology, 2016, 108, 1-7.	2.1	89
83	Thymidine and leucine incorporation in soil bacteria with different cell size. Microbial Ecology, 1994, 27, 267-78.	1.4	87
84	Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biology and Fertility of Soils, 2018, 54, 219-228.	2.3	86
85	Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Global Change Biology, 2019, 25, 827-838.	4.2	86
86	Long- and short-term effects of mercury pollution on the soil microbiome. Soil Biology and Biochemistry, 2018, 120, 191-199.	4.2	84
87	Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation. Geoderma, 2016, 272, 64-72.	2.3	81
88	Partial drying accelerates bacterial growth recovery to rewetting. Soil Biology and Biochemistry, 2017, 112, 269-276.	4.2	81
89	Soil fungal biomass after clear-cutting of a pine forest in central sweden. Soil Biology and Biochemistry, 1980, 12, 495-500.	4.2	79
90	Root exudation and rhizoplane bacterial abundance of barley (Hordeum vulgare L.) in relation to nitrogen fertilization and root growth. Plant and Soil, 1990, 127, 81-89.	1.8	77

#	Article	IF	CITATIONS
91	Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiology Ecology, 1996, 21, 77-86.	1.3	76
92	Adaptation of soil bacterial communities to prevailing pH in different soils. FEMS Microbiology Ecology, 1996, 19, 227-237.	1.3	75
93	Effects of artificial acid rain on microbial activity and biomass. Bulletin of Environmental Contamination and Toxicology, 1979, 23, 737-740.	1.3	73
94	Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter. Soil Biology and Biochemistry, 2007, 39, 3014-3023.	4.2	72
95	Microbial Biomass, Community Structure and Metal Tolerance of a Naturally Pb-Enriched Forest Soil. Microbial Ecology, 2005, 50, 496-505.	1.4	71
96	Bacterial activity along a young barley root measured by the thymidine and leucine incorporation techniques. Soil Biology and Biochemistry, 1998, 30, 1259-1268.	4.2	70
97	A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environmental Toxicology and Chemistry, 2000, 19, 1983-1991.	2.2	69
98	Changes in microfungal community structure after fertilization of scots pine forest soil with ammonium nitrate or urea. Soil Biology and Biochemistry, 1990, 22, 309-312.	4.2	68
99	Response of soil bacterial communities pre-exposed to different metals and reinoculated in an unpolluted soil. Soil Biology and Biochemistry, 2001, 33, 241-248.	4.2	68
100	Soil and rhizosphere microorganisms have the same Q 10 for respiration in a model system. Global Change Biology, 2003, 9, 1788-1791.	4.2	68
101	Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology, 2010, 19, 285-294.	1.1	68
102	Bacterial activity in a forest soil after soil heating and organic amendments measured by the thymidine and leucine incorporation techniques. Soil Biology and Biochemistry, 1996, 28, 419-426.	4.2	67
103	Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers. Biology and Fertility of Soils, 2007, 44, 79-91.	2.3	67
104	Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area. Environmental Pollution Series A, Ecological and Biological, 1986, 41, 89-100.	0.8	66
105	Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biology and Fertility of Soils, 2003, 37, 190-197.	2.3	66
106	Microbial community structure of vineyard soils with different pH and copper content. Applied Soil Ecology, 2010, 46, 276-282.	2.1	66
107	Seasonal and spatial variation in fungal biomass in a forest soil. Soil Biology and Biochemistry, 1982, 14, 353-358.	4.2	65
108	The Rate of Change of a Soil Bacterial Community after Liming as a Function of Temperature. Microbial Ecology, 2003, 46, 177-186.	1.4	65

#	Article	IF	CITATIONS
109	Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community. Soil Biology and Biochemistry, 2011, 43, 2069-2077.	4.2	65
110	Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). European Journal of Soil Biology, 2014, 65, 87-95.	1.4	63
111	Soil microbial community structure and biomass as affected by Pinus pinea plantation in two Mediterranean areas. Applied Soil Ecology, 2010, 45, 56-63.	2.1	62
112	Contrasting Short-Term Antibiotic Effects on Respiration and Bacterial Growth Compromises the Validity of the Selective Respiratory Inhibition Technique to Distinguish Fungi and Bacteria. Microbial Ecology, 2009, 58, 75-85.	1.4	61
113	Copper Tolerance of Microfungi Isolated from Polluted and Unpolluted Forest Soil. Mycologia, 1987, 79, 890-895.	0.8	60
114	Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil?. Soil Biology and Biochemistry, 2004, 36, 2105-2109.	4.2	60
115	Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiology Ecology, 2006, 24, 103-112.	1.3	59
116	Bacterial pH-optima for growth track soil pH, but are higher than expected at low pH. Soil Biology and Biochemistry, 2011, 43, 1569-1575.	4.2	59
117	Effect of soil volume and plant density on mycorrhizal infection and growth response. Plant and Soil, 1984, 77, 373-376.	1.8	58
118	Soil microfungi in an area polluted by heavy metals. Canadian Journal of Botany, 1985, 63, 448-455.	1.2	55
119	Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiology Ecology, 2002, 40, 223-231.	1.3	53
120	Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments. Soil Biology and Biochemistry, 2011, 43, 1023-1033.	4.2	52
121	Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations. Soil Biology and Biochemistry, 2013, 65, 180-185.	4.2	52
122	Soil microbial activity in eleven Swedish coniferous forests in relation to site fertility and nitrogen fertilization. Scandinavian Journal of Forest Research, 1996, 11, 1-6.	0.5	51
123	Temperature-Driven Adaptation of the Bacterial Community in Peat Measured by Using Thymidine and Leucine Incorporation. Applied and Environmental Microbiology, 2001, 67, 1116-1122.	1.4	51
124	Temperature sensitivity of soil microbial activity modeled by the square root equationÂas a unifying model to differentiate between direct temperature effects and microbial community adaptation. Global Change Biology, 2018, 24, 2850-2861.	4.2	51
125	Tolerance (PICT) of the Bacterial Communities to Copper in Vineyards Soils from Spain. Journal of Environmental Quality, 2007, 36, 1760-1764.	1.0	51
126	Fungal populations in podzolic soil experimentally acidified to simulate acid rain. Microbial Ecology, 1984, 10, 197-203.	1.4	48

#	Article	IF	CITATIONS
127	Main factors controlling microbial community structure and function after reclamation of a tailing pond with aided phytostabilization. Geoderma, 2015, 245-246, 1-10.	2.3	48
128	Interaction between pH and Cu toxicity on fungal and bacterial performance in soil. Soil Biology and Biochemistry, 2016, 96, 20-29.	4.2	48
129	The effect of added nitrogen and phosphorus on mycorrhizal growth response and infection in <i>Allium schoenoprasum</i> . Canadian Journal of Botany, 1989, 67, 3227-3232.	1.2	46
130	Induced N-limitation of bacterial growth in soil: Effect of carbon loading and N status in soil. Soil Biology and Biochemistry, 2014, 74, 11-20.	4.2	46
131	Copper Tolerance of Microfungi Isolated from Polluted and Unpolluted Forest Soil. Mycologia, 1987, 79, 890.	0.8	45
132	Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiology Ecology, 2006, 58, 503-516.	1.3	44
133	Biochemical properties and microbial community structure of five different soils after atrazine addition. Biology and Fertility of Soils, 2011, 47, 577-589.	2.3	44
134	Thymidine incorporation into soil bacteria. Soil Biology and Biochemistry, 1990, 22, 803-810.	4.2	43
135	Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. Journal of Microbiological Methods, 1999, 36, 45-54.	0.7	43
136	Microfungal species composition and fungal biomass in a coniferous forest soil polluted by alkaline deposition. Microbial Ecology, 1993, 25, 83-92.	1.4	42
137	Bacterial pollution induced community tolerance (PICT) to Cu and interactions with pH in long-term polluted vineyard soils. Soil Biology and Biochemistry, 2011, 43, 2324-2331.	4.2	42
138	Bacterial and fungal growth in burnt acid soils amended with different high C/N mulch materials. Soil Biology and Biochemistry, 2016, 97, 102-111.	4.2	40
139	PLANT GROWTH RESPONSES TO VESICULAR-ARBUSCULAR MYCORRHIZA. XIV. INTERACTIONS WITH VERTICILLIUM WILT ON TOMATO PLANTS. New Phytologist, 1983, 95, 419-426.	3.5	39
140	Measurements of ATP in forest humus. Soil Biology and Biochemistry, 1991, 23, 501-506.	4.2	39
141	No Long-Term Persistence of Bacterial Pollution-Induced Community Tolerance in Tylosin-Polluted Soil. Environmental Science & Technology, 2008, 42, 6917-6921.	4.6	39
142	Effects of Water Stress, Organic Amendment and Mycorrhizal Inoculation on Soil Microbial Community Structure and Activity During the Establishment of Two Heavy Metal-Tolerant Native Plant Species. Microbial Ecology, 2012, 63, 794-803.	1.4	39
143	Bacterial growth and growth-limiting nutrients following chronic nitrogen additions to a hardwood forest soil. Soil Biology and Biochemistry, 2013, 59, 32-37.	4.2	39
144	Soil bacterial growth after a freezing/thawing event. Soil Biology and Biochemistry, 2016, 100, 229-232.	4.2	38

#	Article	IF	CITATIONS
145	Effects of nitrogen fertilization on the activity and biomass of fungi and bacteria in a podzolic soil. , 1981, 2, 90-98.		36
146	Microbial biomass and ATP in smelter-polluted forest humus. Bulletin of Environmental Contamination and Toxicology, 1991, 47, 278-282.	1.3	36
147	Comparison of fungal and bacterial growth after alleviating induced N-limitation in soil. Soil Biology and Biochemistry, 2016, 103, 97-105.	4.2	36
148	Comparisons of the agar-film and membrane-filter methods for the estimation of hyphal lengths in soil, with particular reference to the effect of magnification. Soil Biology and Biochemistry, 1980, 12, 385-387.	4.2	35
149	Use of Phospholipid Fatty Acids To Detect Previous Self-Heating Events in Stored Peat. Applied and Environmental Microbiology, 2003, 69, 3532-3539.	1.4	35
150	Microbial community structure in forest soils treated with a fire retardant. Biology and Fertility of Soils, 2006, 42, 465-471.	2.3	34
151	Functional implications of the pH-trait distribution of the microbial community in a re-inoculation experiment across a pH gradient. Soil Biology and Biochemistry, 2016, 93, 69-78.	4.2	34
152	Threshold concentration of glucose for bacterial growth in soil. Soil Biology and Biochemistry, 2015, 80, 218-223.	4.2	33
153	Soil microfungi in three Swedish coniferous forests. Ecography, 1978, 1, 62-72.	2.1	32
154	Nitrogen Isotope Patterns in Alaskan Black Spruce Reflect Organic Nitrogen Sources and the Activity of Ectomycorrhizal Fungi. Ecosystems, 2012, 15, 819-831.	1.6	32
155	Microbial dynamics after adding bovine manure effluent together with a nitrification inhibitor (3,4) Tj ETQq1 1 0	.784314 r	gBŢ /Overlock
156	Thymidine and leucine incorporation into bacteria from soils experimentally contaminated with heavy metals. Applied Soil Ecology, 1996, 3, 225-234.	2.1	31
157	Use of pollutionâ€induced community tolerance of the bacterial community to detect phenol toxicity in soil. Environmental Toxicology and Chemistry, 2008, 27, 334-340.	2.2	31
158	Co-selection for antibiotic tolerance in Cu-polluted soil is detected at higher Cu-concentrations than increased Cu-tolerance. Soil Biology and Biochemistry, 2013, 57, 953-956.	4.2	30
159	Long-term warming of a subarctic heath decreases soil bacterial community growth but has no effects on its temperature adaptation. Applied Soil Ecology, 2011, 47, 217-220.	2.1	29
160	Adaptation of soil bacterial communities to prevailing pH in different soils. FEMS Microbiology Ecology, 1996, 19, 227-237.	1.3	28
161	Phospholipid fatty acid composition of size fractionated indigenous soil bacteria. Soil Biology and Biochemistry, 1997, 29, 1565-1569.	4.2	28
162	High turnover of fungal hyphae in incubation experiments. FEMS Microbiology Ecology, 2009, 67, 389-396.	1.3	28

#	Article	IF	CITATIONS
163	A critical examination of the soil washing technique with special reference to the effect of the size of the soil particles. Canadian Journal of Botany, 1988, 66, 1566-1569.	1.2	27
164	Autoradiographic determination of metabolically-active fungal hyphae in forest soil. Soil Biology and Biochemistry, 1988, 20, 123-125.	4.2	26
165	Effects of the properties of the bacterial community on pH adaptation during recolonisation of a humus soil. Soil Biology and Biochemistry, 2004, 36, 1383-1388.	4.2	26
166	Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: An application of the square root (Ratkowsky) model. Global Change Biology, 2021, 27, 1281-1292.	4.2	26
167	Microfungi in a clear-cut pine forest soil in central Sweden. Canadian Journal of Botany, 1981, 59, 1331-1337.	1.2	25
168	Influence of different temperatures on metal tolerance measurements and growth response in bacterial communities from unpolluted and polluted soils. Biology and Fertility of Soils, 1996, 21, 233-238.	2.3	25
169	Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosoteâ€polluted soil. Environmental Toxicology and Chemistry, 2008, 27, 1039-1046.	2.2	24
170	pH Tolerance in Freshwater Bacterioplankton: Trait Variation of the Community as Measured by Leucine Incorporation. Applied and Environmental Microbiology, 2015, 81, 7411-7419.	1.4	24
171	Multivariate modelling of soil microbial variables in forest soil contaminated by heavy metals using wet chemical analyses and pyrolysis GC/MS. Soil Biology and Biochemistry, 1998, 30, 345-357.	4.2	23
172	Assessing the effects of Cu and pH on microorganisms in highly acidic vineyard soils. European Journal of Soil Science, 2012, 63, 571-578.	1.8	23
173	Ecotoxicological assessment of propiconazole using soil bacterial and fungal growth assays. Applied Soil Ecology, 2017, 115, 27-30.	2.1	23
174	Plantâ€mediated effects of elevated ultravioletâ€B radiation on peat microbial communities of a subarctic mire. Global Change Biology, 2008, 14, 925-937.	4.2	22
175	Bioavailability of DOC in leachates, soil matrix solutions and soil water extracts from beech forest floors. Soil Biology and Biochemistry, 2009, 41, 1652-1658.	4.2	22
176	Thymidine incorporation of bacteria sequentially extracted from soil using repeated homogenization-centrifugation. Microbial Ecology, 1996, 31, 153-166.	1.4	21
177	Fungi Benefit from Two Decades of Increased Nutrient Availability in Tundra Heath Soil. PLoS ONE, 2013, 8, e56532.	1.1	21
178	Thymidine, leucine and acetate incorporation into soil bacterial assemblages at different temperatures. FEMS Microbiology Ecology, 1994, 14, 221-231.	1.3	18
179	Soil N chemistry in oak forests along a nitrogen deposition gradient. Biogeochemistry, 2006, 80, 43-55.	1.7	18
180	Comparison of Cu salts and commercial Cu based fungicides on toxicity towards microorganisms in soil. Environmental Pollution, 2020, 257, 113585.	3.7	18

#	Article	IF	CITATIONS
181	Effects of Nesting Cormorants (Phalacrocorax carbo) on Soil Chemistry, Microbial Communities and Soil Fauna. Ecosystems, 2015, 18, 643-657.	1.6	17
182	Repeated drying and rewetting cycles accelerate bacterial growth recovery after rewetting. Biology and Fertility of Soils, 2022, 58, 365-374.	2.3	17
183	Growth of Verticillium dahliae Kleb. hyphae and of bacteria along the roots of rape (Brassica napus L.) seedlings. Canadian Journal of Microbiology, 1987, 33, 916-919.	0.8	16
184	The use of leucine incorporation to determine the toxicity of phenols to bacterial communities extracted from soil. Applied Soil Ecology, 2008, 38, 34-41.	2.1	16
185	Comparing temperature sensitivity of bacterial growth in Antarctic marine water and soil. Global Change Biology, 2020, 26, 2280-2291.	4.2	16
186	Carbon and Nitrogen Amendments Lead to Differential Growth of Bacterial and Fungal Communities in a High-pH Soil. Pedosphere, 2018, 28, 255-260.	2.1	15
187	Short-term toxicity assessment of a triazine herbicide (terbutryn) underestimates the sensitivity of soil microorganisms. Soil Biology and Biochemistry, 2021, 154, 108130.	4.2	15
188	Annual to decadal temperature adaptation of the soil bacterial community after translocation across an elevation gradient in the Andes. Soil Biology and Biochemistry, 2021, 158, 108217.	4.2	14
189	FDA-stained fungal mycelium and respiration rate in reinoculated sterilized soil. Soil Biology and Biochemistry, 1988, 20, 403-404.	4.2	13
190	Assessing plant-microbial competition for 33P using uptake into phospholipids. Applied Soil Ecology, 2007, 36, 233-237.	2.1	12
191	Growth of bacteria in the rhizoplane and the rhizosphere of rape seedlings. FEMS Microbiology Letters, 1988, 53, 355-360.	0.7	9
192	A comparison of sole carbon source utilization patterns and phospholipid fatty acid profiles to detect changes in the root microflora of hydroponically grown crops. Canadian Journal of Microbiology, 2001, 47, 302-308.	0.8	9
193	Temperature Effects on Recovery Time of Bacterial Growth After Rewetting Dry Soil. Microbial Ecology, 2014, 68, 818-821.	1.4	9
194	Temperature affects lag period and growth of bacteria in soil according to a Ratkowsky (square root) model after a drying/rewetting episode. Soil Biology and Biochemistry, 2018, 124, 32-37.	4.2	9
195	The effect of temperature and moisture on lag phase length of bacterial growth in soil after substrate addition. Soil Biology and Biochemistry, 2019, 137, 107563.	4.2	9
196	Bacterial community tolerance to Cu in soils with geochemical baseline concentrations (GBCs) of heavy metals: Importance for pollution induced community tolerance (PICT) determinations using the leucine incorporation method. Soil Biology and Biochemistry, 2021, 155, 108157.	4.2	8
197	Soil carbon and microbes in the warming tropics. Functional Ecology, 2022, 36, 1338-1354.	1.7	8
198	Importance of Inoculum Properties on the Structure and Growth of Bacterial Communities during Recolonisation of Humus Soil with Different pH. Microbial Ecology, 2013, 66, 416-426.	1.4	7

#	Article	IF	CITATIONS
199	Plant species influence on soil microbial short-term response after fire simulation. Plant and Soil, 2014, 374, 701-713.	1.8	7
200	Comparing the effect of Cu-based fungicides and pure Cu salts on microbial biomass, microbial community structure and bacterial community tolerance to Cu. Journal of Hazardous Materials, 2021, 409, 124960.	6.5	7
201	The rate of change of a soil bacterial community after liming as a function of temperature. Microbial Ecology, 2003, 46, 177-186.	1.4	7
202	Estimation of baseline levels of bacterial community tolerance to Cr, Ni, Pb, and Zn in unpolluted soils, a background for PICT (pollution-induced community tolerance) determination. Biology and Fertility of Soils, 2022, 58, 49-61.	2.3	5
203	Effect of Temperature and Time on Growth of Verticillium Chlamydosporium and V. Suchlasporium and Infection of Heterodera Avenae Eggs. Mycologia, 1989, 81, 161-163.	0.8	4
204	The influence of variety and nitrogen amendments on abundance of Microdochium bolleyi on barley roots. Zentralblatt Für Mikrobiologie, 1989, 144, 181-185.	0.2	4
205	Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. , 0, .		4
206	Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. , 0, .		1
207	Influence of different temperatures on metal tolerance measurements and growth response in bacterial communities from unpolluted and polluted soils. Biology and Fertility of Soils, 1996, 21, 233-238.	2.3	0