
Antonio Villaverde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights on the emerging biotechnology of histidine-rich peptides. Biotechnology Advances, 2022, 54, 107817.	11.7	35
2	Self-assembling protein nanocarrier for selective delivery of cytotoxic polypeptides to CXCR4+ head and neck squamous cell carcinoma tumors. Acta Pharmaceutica Sinica B, 2022, 12, 2578-2591.	12.0	15
3	A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model. Biomaterials, 2022, 280, 121258.	11.4	12
4	Time-Prolonged Release of Tumor-Targeted Protein–MMAE Nanoconjugates from Implantable Hybrid Materials. Pharmaceutics, 2022, 14, 192.	4.5	8
5	CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 49.	8.6	24
6	Engineering non-antibody human proteins as efficient scaffolds for selective, receptor-targeted drug delivery. Journal of Controlled Release, 2022, 343, 277-287.	9.9	7
7	The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles. Science China Materials, 2022, 65, 1662-1670.	6.3	3
8	The Poly-Histidine Tag H6 Mediates Structural and Functional Properties of Disintegrating, Protein-Releasing Inclusion Bodies. Pharmaceutics, 2022, 14, 602.	4.5	9
9	A Novel CXCR4-Targeted Diphtheria Toxin Nanoparticle Inhibits Invasion and Metastatic Dissemination in a Head and Neck Squamous Cell Carcinoma Mouse Model. Pharmaceutics, 2022, 14, 887.	4.5	5
10	A diphtheria toxin-based nanoparticle achieves specific cytotoxic effect on CXCR4+ lymphoma cells without toxicity in immunocompromised and immunocompetent mice. Biomedicine and Pharmacotherapy, 2022, 150, 112940.	5.6	4
11	Toxicity Profiling of Bacterial Inclusion Bodies in Human Caco-2 Cells. Frontiers in Bioengineering and Biotechnology, 2022, 10, 842256.	4.1	1
12	An In Silico Methodology That Facilitates Decision Making in the Engineering of Nanoscale Protein Materials. International Journal of Molecular Sciences, 2022, 23, 4958.	4.1	4
13	GSDMD-dependent pyroptotic induction by a multivalent CXCR4-targeted nanotoxin blocks colorectal cancer metastases. Drug Delivery, 2022, 29, 1384-1397.	5.7	16
14	Novel Endometrial Cancer Models Using Sensitive Metastasis Tracing for CXCR4-Targeted Therapy in Advanced Disease. Biomedicines, 2022, 10, 1680.	3.2	6
15	Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomaterialia, 2021, 119, 312-322.	8.3	14
16	Title: insoluble proteins catch heterologous soluble proteins into inclusion bodies by intermolecular interaction of aggregating peptides. Microbial Cell Factories, 2021, 20, 30.	4.0	4
17	Engineering the Performance of Artificial Inclusion Bodies Built of Catalytic β-Galactosidase. ACS Sustainable Chemistry and Engineering, 2021, 9, 2552-2558.	6.7	13
18	Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders. Journal of Extracellular Vesicles, 2021, 10, e12058.	12.2	19

#	Article	IF	CITATIONS
19	Specific Cytotoxic Effect of an Auristatin Nanoconjugate Towards CXCR4+ Diffuse Large B-Cell Lymphoma Cells. International Journal of Nanomedicine, 2021, Volume 16, 1869-1888.	6.7	16
20	In Vitro Fabrication of Microscale Secretory Granules. Advanced Functional Materials, 2021, 31, 2100914.	14.9	13
21	Selecting Subpopulations of High-Quality Protein Conformers among Conformational Mixtures of Recombinant Bovine MMP-9 Solubilized from Inclusion Bodies. International Journal of Molecular Sciences, 2021, 22, 3020.	4.1	8
22	Self-Assembled Nanobodies as Selectively Targeted, Nanostructured, and Multivalent Materials. ACS Applied Materials & Interfaces, 2021, 13, 29406-29415.	8.0	8
23	Biparatopic Protein Nanoparticles for the Precision Therapy of CXCR4+ Cancers. Cancers, 2021, 13, 2929.	3.7	11
24	Antineoplastic effect of a diphtheria toxin-based nanoparticle targeting acute myeloid leukemia cells overexpressing CXCR4. Journal of Controlled Release, 2021, 335, 117-129.	9.9	11
25	Biofabrication of functional protein nanoparticles through simple His-tag engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 12341-12354.	6.7	17
26	Rational engineering of a human GFP-like protein scaffold for humanized targeted nanomedicines. Acta Biomaterialia, 2021, 130, 211-222.	8.3	8
27	Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112123.	5.0	0
28	Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering. Polymers, 2021, 13, 3453.	4.5	0
29	Ion-dependent slow protein release from <i>inÂvivo</i> disintegrating micro-granules. Drug Delivery, 2021, 28, 2383-2391.	5.7	10
30	Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4. Pharmaceutics, 2021, 13, 1922.	4.5	5
31	The Potential of Metalloproteinase-9 Administration to Accelerate Mammary Involution and Boost the Immune System at Dry-Off. Animals, 2021, 11, 3415.	2.3	1
32	Controlling self-assembling and tumor cell-targeting of protein-only nanoparticles through modular protein engineering. Science China Materials, 2020, 63, 147-156.	6.3	11
33	A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models. Haematologica, 2020, 105, 741-753.	3.5	36
34	Endosomal escape of protein nanoparticles engineered through humanized histidine-rich peptides. Science China Materials, 2020, 63, 644-653.	6.3	15
35	Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci. Advanced Materials, 2020, 32, e1907348.	21.0	40
36	Artificial Inclusion Bodies for Clinical Development. Advanced Science, 2020, 7, 1902420.	11.2	36

3

#	Article	IF	CITATIONS
37	Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. ACS Applied Materials & Interfaces, 2020, 12, 5381-5388.	8.0	15
38	Self-assembling as regular nanoparticles dramatically minimizes photobleaching of tumour-targeted GFP. Acta Biomaterialia, 2020, 103, 272-280.	8.3	13
39	Divalent Cations: A Molecular Glue for Protein Materials. Trends in Biochemical Sciences, 2020, 45, 992-1003.	7.5	42
40	Aggregation-prone peptides modulate activity of bovine interferon gamma released from naturally occurring protein nanoparticles. New Biotechnology, 2020, 57, 11-19.	4.4	11
41	Potential of MMP-9 based nanoparticles at optimizing the cow dry period: pulling apart the effects of MMP-9 and nanoparticles. Scientific Reports, 2020, 10, 11299.	3.3	11
42	Release of functional fibroblast growth factor-2 from artificial inclusion bodies. Journal of Controlled Release, 2020, 327, 61-69.	9.9	16
43	Nanostructured antimicrobial peptides: The last push towards clinics. Biotechnology Advances, 2020, 44, 107603.	11.7	71
44	Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles. Pharmaceutics, 2020, 12, 1004.	4.5	25
45	In Vivo Bactericidal Efficacy of GWH1 Antimicrobial Peptide Displayed on Protein Nanoparticles, a Potential Alternative to Antibiotics. Pharmaceutics, 2020, 12, 1217.	4.5	10
46	Developing Protein–Antitumoral Drug Nanoconjugates as Bifunctional Antimicrobial Agents. ACS Applied Materials & Interfaces, 2020, 12, 57746-57756.	8.0	6
47	Recombinant Protein-Based Nanoparticles: Elucidating Their Inflammatory Effects In Vivo and Their Potential as a New Therapeutic Format. Pharmaceutics, 2020, 12, 450.	4.5	9
48	Engineering Protein Nanoparticles Out from Components of the Human Microbiome. Small, 2020, 16, 2001885.	10.0	17
49	The Biological Potential Hidden in Inclusion Bodies. Pharmaceutics, 2020, 12, 157.	4.5	19
50	A refined cocktailing of pro-apoptotic nanoparticles boosts anti-tumor activity. Acta Biomaterialia, 2020, 113, 584-596.	8.3	14
51	Nanostructured recombinant protein particles raise specific antibodies against the nodavirus NNV coat protein in sole. Fish and Shellfish Immunology, 2020, 99, 578-586.	3.6	12
52	Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells. Journal of Controlled Release, 2020, 320, 96-104.	9.9	48
53	Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance. Journal of Materials Chemistry B, 2020, 8, 5080-5088.	5.8	11
54	An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination. Journal of Hematology and Oncology, 2020, 13, 36.	17.0	39

#	Article	IF	CITATIONS
55	Selective delivery of T22-PE24-H6 to CXCR4 ⁺ diffuse large B-cell lymphoma cells leads to wide therapeutic index in a disseminated mouse model. Theranostics, 2020, 10, 5169-5180.	10.0	22
56	Engineering Protein Venoms as Selfâ€Assembling CXCR4â€Targeted Cytotoxic Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000040.	2.3	9
57	Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies. Advanced Science, 2019, 6, 1900849.	11.2	34
58	Nanostructure Empowers Active Tumor Targeting in Ligandâ€Based Molecular Delivery. Particle and Particle Systems Characterization, 2019, 36, 1900304.	2.3	9
59	Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer. Acta Biomaterialia, 2019, 99, 426-432.	8.3	11
60	High-Throughput Cell Motility Studies on Surface-Bound Protein Nanoparticles with Diverse Structural and Compositional Characteristics. ACS Biomaterials Science and Engineering, 2019, 5, 5470-5480.	5.2	7
61	Protein-driven nanomedicines in oncotherapy. Current Opinion in Pharmacology, 2019, 47, 1-7.	3.5	21
62	Engineering a recombinant chlorotoxin as cell-targeted cytotoxic nanoparticles. Science China Materials, 2019, 62, 892-898.	6.3	11
63	Efficient bioactive oligonucleotideâ€protein conjugation for cellâ€ŧargeted cancer therapy. ChemistryOpen, 2019, 8, 382-387.	1.9	7
64	Recruiting potent membrane penetrability in tumor cell-targeted protein-only nanoparticles. Nanotechnology, 2019, 30, 115101.	2.6	11
65	Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiology Reviews, 2019, 43, 53-72.	8.6	77
66	Assembly of histidine-rich protein materials controlled through divalent cations. Acta Biomaterialia, 2019, 83, 257-264.	8.3	49
67	Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach. Journal of Controlled Release, 2018, 279, 29-39.	9.9	30
68	Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs. Journal of Controlled Release, 2018, 274, 81-92.	9.9	55
69	Protein nanoparticles are nontoxic, tuneable cell stressors. Nanomedicine, 2018, 13, 255-268.	3.3	9
70	Improving Biomaterials Imaging for Nanotechnology: Rapid Methods for Protein Localization at Ultrastructural Level. Biotechnology Journal, 2018, 13, e1700388.	3.5	4
71	Protein-Based Therapeutic Killing for Cancer Therapies. Trends in Biotechnology, 2018, 36, 318-335.	9.3	98
72	Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. European Journal of Pharmaceutical Sciences, 2018, 112, 71-78.	4.0	11

#	Article	IF	CITATIONS
73	Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	64
74	A new approach to obtain pure and active proteins from Lactococcus lactis protein aggregates. Scientific Reports, 2018, 8, 13917.	3.3	32
75	Selective CXCR4 ⁺ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin. Small, 2018, 14, e1800665.	10.0	40
76	Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1777-1786.	3.3	12
77	Conformational Conversion during Controlled Oligomerization into Nonamylogenic Protein Nanoparticles. Biomacromolecules, 2018, 19, 3788-3797.	5.4	18
78	Protein Nanoparticles Made of Recombinant Viral Antigens: A Promising Biomaterial for Oral Delivery of Fish Prophylactics. Frontiers in Immunology, 2018, 9, 1652.	4.8	16
79	Surface-Bound Gradient Deposition of Protein Nanoparticles for Cell Motility Studies. ACS Applied Materials & Interfaces, 2018, 10, 25779-25786.	8.0	9
80	The fusogenic peptide HA2 impairs selectivity of CXCR4-targeted protein nanoparticles. Chemical Communications, 2017, 53, 4565-4568.	4.1	12
81	Bacterial Inclusion Bodies: Discovering Their Better Half. Trends in Biochemical Sciences, 2017, 42, 726-737.	7.5	134
82	Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Nanoscale, 2017, 9, 6427-6435.	5.6	21
83	Engineering tumor cell targeting in nanoscale amyloidal materials. Nanotechnology, 2017, 28, 015102.	2.6	24
84	Engineering multifunctional protein nanoparticles by <i>in vitro</i> disassembling and reassembling of heterologous building blocks. Nanotechnology, 2017, 28, 505102.	2.6	12
85	Peptideâ€Based Nanostructured Materials with Intrinsic Proapoptotic Activities in CXCR4 ⁺ Solid Tumors. Advanced Functional Materials, 2017, 27, 1700919.	14.9	32
86	Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity. Acta Biomaterialia, 2017, 60, 256-263.	8.3	26
87	Targeting in Cancer Therapies. Medical Sciences (Basel, Switzerland), 2016, 4, 6.	2.9	7
88	αâ€Galactosidaseâ€A Loadedâ€Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration. Advanced Healthcare Materials, 2016, 5, 829-840.	7.6	40
89	Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs. Scientific Reports, 2016, 6, 35765.	3.3	28
90	CXCR4 ⁺ -targeted protein nanoparticles produced in the food-grade bacterium <i>Lactococcus lactis</i> . Nanomedicine, 2016, 11, 2387-2398.	3.3	10

#	Article	IF	CITATIONS
91	Functional recruitment for drug delivery through protein-based nanotechnologies. Nanomedicine, 2016, 11, 1333-1336.	3.3	20
92	Recombinant pharmaceuticals from microbial cells: a 2015 update. Microbial Cell Factories, 2016, 15, 33.	4.0	265
93	Conformational and functional variants of CD44-targeted protein nanoparticles bio-produced in bacteria. Biofabrication, 2016, 8, 025001.	7.1	15
94	Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4 + colorectal cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1987-1996.	3.3	34
95	Nanostructured recombinant cytokines: A highly stable alternative to short-lived prophylactics. Biomaterials, 2016, 107, 102-114.	11.4	42
96	Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. ACS Applied Materials & Interfaces, 2016, 8, 25741-25752.	8.0	20
97	Engineering bacterial inclusion bodies as nanostructured depots of functional protein drugs. New Biotechnology, 2016, 33, S149.	4.4	0
98	Functional protein-based nanomaterial produced in microorganisms recognized as safe: A new platform for biotechnology. Acta Biomaterialia, 2016, 43, 230-239.	8.3	42
99	Functional inclusion bodies produced in the yeast Pichia pastoris. Microbial Cell Factories, 2016, 15, 166.	4.0	32
100	Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli. Microbial Cell Factories, 2016, 15, 59.	4.0	13
101	Cellular uptake and intracellular fate of protein releasing bacterial amyloids in mammalian cells. Soft Matter, 2016, 12, 3451-3460.	2.7	36
102	Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1241-1251.	3.3	26
103	Complex Particulate Biomaterials as Immunostimulant-Delivery Platforms. PLoS ONE, 2016, 11, e0164073.	2.5	23
104	Bottomâ€Up Instructive Quality Control in the Biofabrication of Smart Protein Materials. Advanced Materials, 2015, 27, 7816-7822.	21.0	61
105	A novel bio-functional material based on mammalian cell aggresomes. Applied Microbiology and Biotechnology, 2015, 99, 7079-7088.	3.6	16
106	Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Applied Microbiology and Biotechnology, 2015, 99, 5863-5874.	3.6	22
107	BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnology Advances, 2015, 33, 277-287.	11.7	66
108	Formulating tumor-homing peptides as regular nanoparticles enhances receptor-mediated cell penetrability. Materials Letters, 2015, 154, 140-143.	2.6	8

#	Article	IF	CITATIONS
109	Annual acknowledgement of manuscript reviewers. Microbial Cell Factories, 2015, 14, 34.	4.0	Ο
110	Integrating mechanical and biological control of cell proliferation through bioinspired multieffector materials. Nanomedicine, 2015, 10, 873-891.	3.3	20
111	Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial Cell Factories, 2015, 14, 57.	4.0	178
112	Towards protein-based viral mimetics for cancer therapies. Trends in Biotechnology, 2015, 33, 253-258.	9.3	65
113	Targeting low-density lipoprotein receptors with protein-only nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	2
114	Functional protein aggregates: just the tip of the iceberg. Nanomedicine, 2015, 10, 2881-2891.	3.3	42
115	Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Critical Reviews in Biotechnology, 2015, 35, 209-221.	9.0	50
116	Higher metastatic efficiency of KRas G12V than KRas G13D in a colorectal cancer model. FASEB Journal, 2015, 29, 464-476.	0.5	43
117	Bacterial Inclusion Body Purification. Methods in Molecular Biology, 2015, 1258, 293-305.	0.9	11
118	Abstract 2645: Preclinical validation of Myc inhibition by a new generation of Omomyc-based inhibitors. , 2015, , .		0
119	Recombinant protein materials for bioengineering and nanomedicine. Nanomedicine, 2014, 9, 2817-2828.	3.3	33
120	Expanding the recombinant protein quality in Lactococcus lactis. Microbial Cell Factories, 2014, 13, 167.	4.0	25
121	Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates. Acta Biomaterialia, 2014, 10, 1354-1359.	8.3	35
122	Effect of the DnaK chaperone on the conformational quality of JCV VP1 virusâ€like particles produced in <i>Escherichia coli</i> . Biotechnology Progress, 2014, 30, 744-748.	2.6	2
123	Production of functional inclusion bodies in endotoxin-free Escherichia coli. Applied Microbiology and Biotechnology, 2014, 98, 9229-9238.	3.6	42
124	Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. International Journal of Pharmaceutics, 2014, 473, 286-295.	5.2	38
125	Subcutaneous preconditioning increases invasion and metastatic dissemination in colorectal cancer models. DMM Disease Models and Mechanisms, 2014, 7, 387-96.	2.4	8
126	Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 535-541.	3.3	27

#	Article	IF	CITATIONS
127	<i>In Vivo</i> Architectonic Stability of Fully <i>de Novo</i> Designed Protein-Only Nanoparticles. ACS Nano, 2014, 8, 4166-4176.	14.6	89
128	Topographically targeted osteogenesis of mesenchymal stem cells stimulated by inclusion bodies attached to polycaprolactone surfaces. Nanomedicine, 2014, 9, 207-220.	3.3	25
129	Annual acknowledgement of manuscript reviewers. Microbial Cell Factories, 2014, 13, 18.	4.0	1
130	Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14047.	4.1	6
131	Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery. Journal of Controlled Release, 2013, 171, 63-72.	9.9	22
132	Bacterial cell factories for recombinant protein production; expanding the catalogue. Microbial Cell Factories, 2013, 12, 113.	4.0	83
133	Multifunctional Nanovesicle-Bioactive Conjugates Prepared by a One-Step Scalable Method Using CO ₂ -Expanded Solvents. Nano Letters, 2013, 13, 3766-3774.	9.1	40
134	Overexpression of the nuclear factor kappaB inhibitor A20 is neurotoxic after an excitotoxic injury to the immature rat brain. Neurological Research, 2013, 35, 308-319.	1.3	6
135	Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomaterialia, 2013, 9, 6134-6142.	8.3	65
136	Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnology Advances, 2013, 31, 140-153.	11.7	116
137	Two-Dimensional Microscale Engineering of Protein-Based Nanoparticles for Cell Guidance. ACS Nano, 2013, 7, 4774-4784.	14.6	32
138	Microbial biofabrication for nanomedicine: biomaterials, nanoparticles and beyond. Nanomedicine, 2013, 8, 1895-1898.	3.3	25
139	A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine, 2013, 8, 1587-1599.	3.3	26
140	Improved performance of proteinâ€based recombinant gene therapy vehicles by tuning downstream procedures. Biotechnology Progress, 2013, 29, 1458-1463.	2.6	1
141	Bacterial inclusion bodies: an emerging platform for drug delivery and cell therapy. Nanomedicine, 2012, 7, 1277-1279.	3.3	23
142	RGD-based cell ligands for cell-targeted drug delivery act as potent trophic factors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1263-1266.	3.3	16
143	Bioadhesiveness and efficient mechanotransduction stimuli synergistically provided by bacterial inclusion bodies as scaffolds for tissue engineering. Nanomedicine, 2012, 7, 79-93.	3.3	40
144	Disulfide Bond Formation and Activation of Escherichia coli β-Galactosidase under Oxidizing Conditions. Applied and Environmental Microbiology, 2012, 78, 2376-2385.	3.1	9

#	Article	IF	CITATIONS
145	Enzymatic characterization of highly stable human alpha-galactosidase A displayed on magnetic particles. Biochemical Engineering Journal, 2012, 67, 20-27.	3.6	13
146	Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microbial Cell Factories, 2012, 11, 156.	4.0	65
147	Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microbial Cell Factories, 2012, 11, 76.	4.0	52
148	Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials, 2012, 33, 8714-8722.	11.4	65
149	Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles. International Journal of Nanomedicine, 2012, 7, 4533.	6.7	61
150	Nanopills: Functional Inclusion Bodies Produced in Bacteria as Naturally Occurring Nanopills for Advanced Cell Therapies (Adv. Mater. 13/2012). Advanced Materials, 2012, 24, 1741-1741.	21.0	0
151	Inclusion bodies of fuculoseâ€1â€phosphate aldolase as stable and reusable biocatalysts. Biotechnology Progress, 2012, 28, 421-427.	2.6	17
152	Overexpression of the Immunoreceptor CD300f Has a Neuroprotective Role in a Model of Acute Brain Injury. Brain Pathology, 2012, 22, 318-328.	4.1	25
153	Bacterial inclusion bodies: making gold from waste. Trends in Biotechnology, 2012, 30, 65-70.	9.3	157
154	Recombinant Fab expression and secretion in Escherichia coli continuous culture at medium cell densities: Influence of temperature. Process Biochemistry, 2012, 47, 446-452.	3.7	21
155	Interleukinâ€10 overexpression does not synergize with the neuroprotective action of RGDâ€containing vectors after postnatal brain excitotoxicity but modulates the main inflammatory cell responses. Journal of Neuroscience Research, 2012, 90, 143-159.	2.9	4
156	Functional Inclusion Bodies Produced in Bacteria as Naturally Occurring Nanopills for Advanced Cell Therapies. Advanced Materials, 2012, 24, 1742-1747.	21.0	67
157	How to break recombinant bacteria: Does it matter?. Bioengineered Bugs, 2011, 2, 222-225.	1.7	7
158	Polyethylenimine-polyethyleneglycol-bis(aminoethylphosphate) nanoparticles mediated efficient DNA and siRNA transfection in mammalian cells. Soft Matter, 2011, 7, 6103.	2.7	7
159	Preface. Progress in Molecular Biology and Translational Science, 2011, 104, xv-xvi.	1.7	0
160	Analytical Approaches for Assessing Aggregation of Protein Biopharmaceuticals. Current Pharmaceutical Biotechnology, 2011, 12, 1530-1536.	1.6	13
161	Recombinant protein quality evaluation: proposal for a minimal information standard. Standards in Genomic Sciences, 2011, 5, 195-197.	1.5	8
162	Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS Journal, 2011, 278, 2419-2427.	4.7	68

#	Article	IF	CITATIONS
163	Biological activities of histidine-rich peptides; merging biotechnology and nanomedicine. Microbial Cell Factories, 2011, 10, 101.	4.0	47
164	Environmental quality of mussel farms in the Vigo estuary: Pollution by PAHs, origin and effects on reproduction. Environmental Pollution, 2011, 159, 250-265.	7.5	70
165	Post-production protein stability: trouble beyond the cell factory. Microbial Cell Factories, 2011, 10, 60.	4.0	39
166	Co-production of GroELS discriminates between intrinsic and thermally-induced recombinant protein aggregation during substrate quality control. Microbial Cell Factories, 2011, 10, 79.	4.0	9
167	Influence of growth temperature on the production of antibody Fab fragments in different microbes: A host comparative analysis. Biotechnology Progress, 2011, 27, 38-46.	2.6	46
168	Integrated approach to produce a recombinant, hisâ€ŧagged human αâ€galactosidase a in mammalian cells. Biotechnology Progress, 2011, 27, 1206-1217.	2.6	17
169	Nanoparticulate architecture of protein-based artificial viruses is supported by protein–DNA interactions. Nanomedicine, 2011, 6, 1047-1061.	3.3	14
170	Friendly production of bacterial inclusion bodies. Korean Journal of Chemical Engineering, 2010, 27, 385-389.	2.7	22
171	Engineering building blocks for self-assembling protein nanoparticles. Microbial Cell Factories, 2010, 9, 101.	4.0	29
172	DnaK/DnaJ-assisted recombinant protein production in Trichoplusia ni larvae. Applied Microbiology and Biotechnology, 2010, 86, 633-639.	3.6	8
173	Side effects of chaperone gene co-expression in recombinant protein production. Microbial Cell Factories, 2010, 9, 64.	4.0	84
174	Integrated Approach to Optimize Transient Gene Expression in Mammalian Cells: Production of a Recombinant Human Alpha-galactosidase A. Journal of Biotechnology, 2010, 150, 436-437.	3.8	0
175	The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation. Biomaterials, 2010, 31, 5805-5812.	11.4	67
176	Internalization and kinetics of nuclear migration of protein-only, arginine-rich nanoparticles. Biomaterials, 2010, 31, 9333-9339.	11.4	22
177	Isolation of cell-free bacterial inclusion bodies. Microbial Cell Factories, 2010, 9, 71.	4.0	72
178	Cross-system excision of chaperone-mediated proteolysis in chaperone-assisted recombinant protein production. Bioengineered Bugs, 2010, 1, 148-150.	1.7	0
179	Protein nanodisk assembling and intracellular trafficking powered by an arginine-rich (R9) peptide. Nanomedicine, 2010, 5, 259-268.	3.3	59
180	Nanostructured bacterial materials for innovative medicines. Trends in Microbiology, 2010, 18, 423-430.	7.7	107

#	Article	IF	CITATIONS
181	Nanotechnology, bionanotechnology and microbial cell factories. Microbial Cell Factories, 2010, 9, 53.	4.0	48
182	Protein Aggregation and Soluble Aggregate Formation Screened by a Fast Microdialysis Assay. Journal of Biomolecular Screening, 2010, 15, 453-457.	2.6	12
183	Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering. Nanotechnology, 2010, 21, 205101.	2.6	62
184	Discriminating Foot-and-Mouth Disease Virus-Infected and Vaccinated Animals by Use of β-Galactosidase Allosteric Biosensors. Vaccine Journal, 2009, 16, 1228-1235.	3.1	7
185	Modular Protein Engineering in Emerging Cancer Therapies. Current Pharmaceutical Design, 2009, 15, 893-916.	1.9	38
186	Rehosting of Bacterial Chaperones for High-Quality Protein Production. Applied and Environmental Microbiology, 2009, 75, 7850-7854.	3.1	20
187	Biomedical applications of distally controlled magnetic nanoparticles. Trends in Biotechnology, 2009, 27, 468-476.	9.3	257
188	Peptide-mediated DNA condensation for non-viral gene therapy. Biotechnology Advances, 2009, 27, 432-438.	11.7	73
189	Surface Cell Growth Engineering Assisted by a Novel Bacterial Nanomaterial. Advanced Materials, 2009, 21, 4249-4253.	21.0	73
190	Screening HIVâ€1 antigenic peptides as receptors for antibodies and CD4 in allosteric nanosensors. Journal of Molecular Recognition, 2009, 22, 255-260.	2.1	5
191	Bacterial inclusion bodies as novel functional and biocompatible nanomaterials. New Biotechnology, 2009, 25, S27.	4.4	Ο
192	Fast electrochemical detection of anti-HIV antibodies: Coupling allosteric enzymes and disk microelectrode arrays. Analytica Chimica Acta, 2009, 641, 1-6.	5.4	25
193	Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories, 2009, 8, 17.	4.0	349
194	Learning about protein solubility from bacterial inclusion bodies. Microbial Cell Factories, 2009, 8, 4.	4.0	68
195	Systems-Level Analysis of Protein Quality in Inclusion Body-Forming Escherichia coli Cells. , 2009, , 295-326.		1
196	In situ protein folding and activation in bacterial inclusion bodies. Biotechnology and Bioengineering, 2008, 100, 797-802.	3.3	29
197	Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2008, 101, 1353-1358.	3.3	41
198	Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discovery Today, 2008, 13, 1067-1074.	6.4	41

#	Article	IF	CITATIONS
199	Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microbial Cell Factories, 2008, 7, 11.	4.0	269
200	The scientific impact of microbial cell factories. Microbial Cell Factories, 2008, 7, 33.	4.0	3
201	Membrane-active peptides for non-viral gene therapy: making the safest easier. Trends in Biotechnology, 2008, 26, 267-275.	9.3	85
202	The Functional Quality of Soluble Recombinant Polypeptides Produced in Escherichia coli Is Defined by a Wide Conformational Spectrum. Applied and Environmental Microbiology, 2008, 74, 7431-7433.	3.1	37
203	Antiretroviral Therapy-Induced Functional Modification of IgG4 and IgM Responses in HIV-1–Infected Individuals Screened by an Allosteric Biosensor. Journal of Biomolecular Screening, 2008, 13, 817-821.	2.6	4
204	Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies. Biochemical and Biophysical Research Communications, 2007, 355, 637-642.	2.1	22
205	Divergent Genetic Control of Protein Solubility and Conformational Quality in Escherichia coli. Journal of Molecular Biology, 2007, 374, 195-205.	4.2	85
206	Recombinant protein production in the new Millennium. Microbial Cell Factories, 2007, 6, 33.	4.0	2
207	The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnology and Bioengineering, 2007, 96, 1101-1106.	3.3	189
208	RGD domains neuroprotect the immature brain by a glialâ€dependent mechanism. Annals of Neurology, 2007, 62, 251-261.	5.3	18
209	Allosteric molecular sensing of anti-HIV antibodies by an immobilized engineered β-galactosidase. Enzyme and Microbial Technology, 2007, 41, 492-497.	3.2	3
210	Recombinant protein solubility—does more mean better?. Nature Biotechnology, 2007, 25, 718-720.	17.5	119
211	Role of the chaperone DnaK in protein solubility and conformational quality in inclusion body-formingEscherichia colicells. FEMS Microbiology Letters, 2007, 273, 187-195.	1.8	49
212	Localization of Functional Polypeptides in Bacterial Inclusion Bodies. Applied and Environmental Microbiology, 2007, 73, 289-294.	3.1	102
213	Analysis of recombinant protein toxicity in E. coli through a phage λ-based genetic screening system. Biotechnology Letters, 2007, 29, 1381-1386.	2.2	5
214	Cellular toxicity triggered by bacterial inclusion bodies. Microbial Cell Factories, 2006, 5, P9.	4.0	0
215	Title is missing!. Microbial Cell Factories, 2006, 5, P43.	4.0	0
216	Performance of beta-galactosidase inclusion bodies in enzymatic bioprocesses. Microbial Cell Factories, 2006, 5, P14.	4.0	0

#	Article	IF	CITATIONS
217	Comparative analysis of E. coli inclusion bodies and thermal protein aggregates. Microbial Cell Factories, 2006, 5, P16.	4.0	1
218	Insertional protein engineering for analytical molecular sensing. Microbial Cell Factories, 2006, 5, 15.	4.0	26
219	The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microbial Cell Factories, 2006, 5, 26.	4.0	38
220	High-throughput, functional screening of the anti-HIV-1 humoral response by an enzymatic nanosensor. Molecular Immunology, 2006, 43, 2119-2123.	2.2	14
221	Protein Inclusion Bodies in Recombinant Bacteria. , 2006, , 237-292.		10
222	Protein quality in bacterial inclusion bodies. Trends in Biotechnology, 2006, 24, 179-185.	9.3	310
223	Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector. BMC Neuroscience, 2006, 7, 35.	1.9	32
224	Enhanced molecular recognition signal in allosteric biosensing by proper substrate selection. Biotechnology and Bioengineering, 2006, 94, 193-199.	3.3	7
225	Protein Inclusion Bodies in Recombinant Bacteria. , 2006, , 237-292.		2
226	Folding of a misfolding-prone β-galactosidase in absence of DnaK. Biotechnology and Bioengineering, 2005, 90, 869-875.	3.3	35
227	A mathematical approach to molecular organization and proteolytic disintegration of bacterial inclusion bodies. Mathematical Medicine and Biology, 2005, 22, 209-226.	1.2	5
228	Localization of Chaperones DnaK and GroEL in Bacterial Inclusion Bodies. Journal of Bacteriology, 2005, 187, 3599-3601.	2.2	106
229	Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. Journal of Biotechnology, 2005, 119, 163-171.	3.8	31
230	Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. Journal of Biotechnology, 2005, 118, 406-412.	3.8	35
231	Amyloid-like Properties of Bacterial Inclusion Bodies. Journal of Molecular Biology, 2005, 347, 1025-1037.	4.2	217
232	Engineering the E. coli β-galactosidase for the screening of antiviral protease inhibitors. Biochemical and Biophysical Research Communications, 2005, 329, 453-456.	2.1	3
233	Focusing in bioproduction science. Microbial Cell Factories, 2005, 4, 10.	4.0	0
234	Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microbial Cell Factories, 2005, 4, 27.	4.0	266

#	Article	IF	CITATIONS
235	Modular protein engineering for non-viral gene therapy. Trends in Biotechnology, 2004, 22, 371-377.	9.3	50
236	The impact of dnaKJ overexpression on recombinant protein solubility results from antagonistic effects on the control of protein quality. Biotechnology Letters, 2004, 26, 595-601.	2.2	11
237	A new editorial board for a new editorial period. Microbial Cell Factories, 2004, 3, 3.	4.0	1
238	Profiling the allosteric response of an engineered β-galactosidase to its effector, anti-HIV antibody. Biochemical and Biophysical Research Communications, 2004, 314, 854-860.	2.1	15
239	Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnology Letters, 2003, 25, 1385-1395.	2.2	276
240	Engineering ofEscherichia coliβ-galactosidase for solvent display of a functional scFv antibody fragment. FEBS Letters, 2003, 533, 115-118.	2.8	5
241	Role of molecular chaperones in inclusion body formation. FEBS Letters, 2003, 537, 215-221.	2.8	83
242	Allosteric enzymes as biosensors for molecular diagnosis. FEBS Letters, 2003, 554, 169-172.	2.8	44
243	Engineering nuclear localization signals in modular protein vehicles for gene therapy. Biochemical and Biophysical Research Communications, 2003, 304, 625-631.	2.1	33
244	Nonviral Gene Delivery to the Central Nervous System Based on a Novel Integrin-Targeting Multifunctional Protein. Human Gene Therapy, 2003, 14, 1215-1223.	2.7	23
245	Old bugs for new tasks; the microbial offer in the proteomics era. Microbial Cell Factories, 2002, 1, 4.	4.0	3
246	Construction and deconstruction of bacterial inclusion bodies. Journal of Biotechnology, 2002, 96, 3-12.	3.8	191
247	Control of Escherichia coli growth rate through cell density. Microbiological Research, 2002, 157, 257-265.	5.3	25
248	Enhanced response to antibody binding in engineered β-galactosidase enzymatic sensors. BBA - Proteins and Proteomics, 2002, 1596, 212-224.	2.1	21
249	Connection between gene dosage and protein stability revealed by a high-yield production of recombinant proteins in anE. coli LexA1(Ind?) background. Biotechnology and Bioengineering, 2002, 78, 722-730.	3.3	5
250	Tailoring molecular sensing for peptide displaying engineered enzymes. Biotechnology Letters, 2002, 24, 469-477.	2.2	5
251	Title is missing!. Biotechnology Letters, 2002, 24, 1543-1551.	2.2	8
252	Title is missing!. Biotechnology Letters, 2002, 24, 1939-1944.	2.2	15

#	Article	IF	CITATIONS
253	In Situ Proteolytic Digestion of Inclusion Body Polypeptides Occurs as a Cascade Process. Biochemical and Biophysical Research Communications, 2001, 282, 436-441.	2.1	14
254	Efficient Accommodation of Recombinant, Foot-and-Mouth Disease Virus RGD Peptides to Cell-Surface Integrins. Biochemical and Biophysical Research Communications, 2001, 285, 201-206.	2.1	14
255	Protein aggregation as bacterial inclusion bodies is reversible. FEBS Letters, 2001, 489, 29-33.	2.8	129
256	Variable specific activity ofEscherichia coli?-galactosidase in bacterial cells. Biotechnology and Bioengineering, 2001, 72, 255-260.	3.3	11
257	Plasmid maintenance and recombinant cell fitness explored in bacterial colonies. Biotechnology Letters, 2001, 23, 831-838.	2.2	2
258	Cell lysis in Escherichia coli cultures stimulates growth and biosynthesis of recombinant proteins in surviving cells. Microbiological Research, 2001, 156, 13-18.	5.3	18
259	Phage spread dynamics in clonal bacterial populations is depending on features of the founder cell. Microbiological Research, 2001, 156, 35-40.	5.3	0
260	Engineering Regulable Escherichia coliβ-Galactosidases as Biosensors for Anti-HIV Antibody Detection in Human Sera. Journal of Biological Chemistry, 2001, 276, 40087-40095.	3.4	35
261	Variable specific activity of Escherichia coli beta-galactosidase in bacterial cells. Biotechnology and Bioengineering, 2001, 72, 255-60.	3.3	3
262	Exploiting viral cell-targeting abilities in a single polypeptide, non-infectious, recombinant vehicle for integrin-mediated DNA delivery and gene expression. , 2000, 68, 689-696.		30
263	Molecular Mechanisms for Antibody-Mediated Modulation of Peptide-Displaying Enzyme Sensors. Biochemical and Biophysical Research Communications, 2000, 275, 360-364.	2.1	21
264	Molecular Organization of Protein–DNA Complexes for Cell-Targeted DNA Delivery. Biochemical and Biophysical Research Communications, 2000, 278, 455-461.	2.1	30
265	Fine architecture of bacterial inclusion bodies. FEBS Letters, 2000, 471, 7-11.	2.8	118
266	Corrigendum to: Distinct mechanisms of antibody-mediated enzymatic reactivation in β-galactosidase molecular sensors. FEBS Letters, 2000, 473, 123-123.	2.8	8
267	Successful mimicry of a complex viral antigen by multiple peptide insertions in a carrier protein. FEBS Letters, 2000, 474, 87-92.	2.8	5
268	RecA-dependent viral burst in bacterial colonies during the entry into stationary phase. FEMS Microbiology Letters, 1999, 170, 313-317.	1.8	5
269	Heat-inactivation of plasmid-encoded Cl857 repressor induces gene expression from IndâÂ^Â'lambda prophage in recombinantEscherichia coli. FEMS Microbiology Letters, 1999, 177, 327-334.	1.8	4
270	Distinct chaperone affinity to folding variants of homologous recombinant proteins. Biotechnology Letters, 1999, 21, 531-536.	2.2	6

#	Article	IF	CITATIONS
271	Proteolytic digestion of bacterial inclusion body proteins during dynamic transition between soluble and insoluble forms. BBA - Proteins and Proteomics, 1999, 1434, 170-176.	2.1	36
272	Secretion-dependent proteolysis of heterologous protein by recombinantEscherichia coli is connected to an increased activity of the energy-generating dissimilatory pathway. , 1999, 66, 61-67.		33
273	The expression of recombinant genes from bacteriophage lambda strong promoters triggers the SOS response inEscherichia coli. , 1999, 64, 127-127.		3
274	Tolerance ofEscherichia coli ?-galactosidase C-terminus to different-sized fusions. , 1999, 64, 644-649.		10
275	RecA-dependent viral burst in bacterial colonies during the entry into stationary phase. FEMS Microbiology Letters, 1999, 170, 313-317.	1.8	5
276	Detection of Molecular Interactions by Using a New Peptide-Displaying Bacteriophage Biosensor. Biochemical and Biophysical Research Communications, 1999, 262, 801-805.	2.1	6
277	Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiology Letters, 1998, 169, 9-15.	1.8	65
278	Optimized release of recombinant proteins by ultrasonication ofE. coli cells. , 1998, 58, 536-540.		99
279	Plasmid maintenance inEscherichia coli recombinant cultures is dramatically, steadily, and specifically influenced by features of the encoded proteins. , 1998, 58, 625-632.		84
280	A cell adhesion peptide from foot-and-mouth disease virus can direct cell targeted delivery of a functional enzyme. , 1998, 59, 294-301.		7
281	The expression of recombinant genes from bacteriophage lambda strong promoters triggers the SOS response inEscherichia coli. , 1998, 60, 551-559.		31
282	Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiology Letters, 1998, 169, 9-15.	1.8	61
283	Unfolding of bacteriophage P22 tailspike protein: enhanced thermal stability of an N-terminal fusion mutant. FEBS Letters, 1998, 432, 228-230.	2.8	8
284	Engineering of solvent-exposed loops inEscherichia colil2-galactosidase. FEBS Letters, 1998, 434, 23-27.	2.8	49
285	Distinct mechanisms of antibody-mediated enzymatic reactivation in β-galactosidase molecular sensors. FEBS Letters, 1998, 438, 267-271.	2.8	24
286	Insertional Mutagenesis in the Tailspike Protein of Bacteriophage P22. Biochemical and Biophysical Research Communications, 1998, 244, 428-433.	2.1	9
287	Display-Induced Antigenic Variation in Recombinant Peptides. Biochemical and Biophysical Research Communications, 1998, 248, 773-777.	2.1	7
288	Conformational flexibility in a highly mobile protein loop of foot-and-mouth disease virus: distinct structural requirements for integrin and antibody binding 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 283, 331-338.	4.2	20

#	Article	IF	CITATIONS
289	Limitedin VivoProteolysis of Aggregated Proteins. Biochemical and Biophysical Research Communications, 1997, 237, 325-330.	2.1	36
290	Viral spread within ageing bacterial populations. Gene, 1997, 202, 147-149.	2.2	9
291	Reversible activation of a cryptic cleavage site within E. coli β-galactosidase in β-galactosidase fusion proteins. BBA - Proteins and Proteomics, 1997, 1343, 221-226.	2.1	13
292	Title is missing!. Biotechnology Letters, 1997, 19, 373-378.	2.2	13
293	Title is missing!. Biotechnology Letters, 1997, 19, 225-228.	2.2	8
294	Antigenicity of VP60 structural proteinof rabbit haemorrhagic disease virus. Archives of Virology, 1997, 142, 1843-1848.	2.1	8
295	The position of the heterologous domain can influence the solubility and proteolysis of β-galactosidase fusion proteins in E. coli. Journal of Biotechnology, 1996, 48, 191-200.	3.8	63
296	Peptide display on functional tailspike protein of bacteriophage P22. Gene, 1996, 176, 225-229.	2.2	10
297	Converging antigenic structure of a recombinant viral peptide displayed on different frameworks of carrier proteins. FEBS Letters, 1996, 397, 169-172.	2.8	4
298	A recombinant, arginine-glycine-aspartic acid (RGD) motif from foot-and-mouth disease virus binds mammalian cells through vitronectin and, to a lower extent, fibronectin receptors. Gene, 1996, 180, 101-106.	2.2	22
299	Microheterogeneity of p60 capsid protein and the encoding gene among contemporary isolates of rabbit hemorrhagic disease virus. Virus Genes, 1996, 12, 189-192.	1.6	8
300	Antigenicity of a viral peptide displayed on β-galactosidase fusion proteins is influenced by the presence of the homologous partner protein. FEMS Microbiology Letters, 1996, 145, 77-82.	1.8	2
301	Polylinker-Encoded Peptides Can Confer Toxicity to Recombinant Proteins Produced in Escherichia coli. Biotechnology Progress, 1996, 12, 723-727.	2.6	18
302	β-Galactosidase Enzymatic Activity as a Molecular Probe to Detect Specific Antibodies. Journal of Biological Chemistry, 1996, 271, 21251-21256.	3.4	49
303	Peptide insertions in ?-galactosidase activating interface can improve binding in TPEG-Sepharose affinity chromatography. Biotechnology Letters, 1995, 9, 767-770.	0.5	3
304	Induced mutagenesis by bleomycin in the purple sulfur bacterium Thiocapsa roseopersicina. Current Microbiology, 1995, 30, 117-120.	2.2	6
305	Improved Mimicry of a Foot-and-Mouth Disease Virus Antigenic Site by a Viral Peptide Displayed on β-Galactosidase Surface. Bio/technology, 1995, 13, 801-804.	1.5	52
306	A recombinant foot-and-mouth disease virus antigen inhibits DNA replication and triggers the SOS response inEscherichia coli. FEMS Microbiology Letters, 1995, 129, 157-162.	1.8	8

#	Article	IF	CITATIONS
307	Mitomycin C stimulates thermally induced recombinant gene expression in Escherichia coli MC strains. Applied Microbiology and Biotechnology, 1995, 42, 890-894.	3.6	0
308	A recombinant foot-and-mouth disease virus antigen inhibits DNA replication and triggers the SOS response in. FEMS Microbiology Letters, 1995, 129, 157-162.	1.8	6
309	An optimized ultrasonication protocol for bacterial cell disruption and recovery of ?-galactosidase fusion proteins. Biotechnology Letters, 1994, 8, 509.	0.5	22
310	Production of thermally induced recombinant proteins relative to cell biomass is influenced by cell density in Escherichia coli batch cultures. Biotechnology Letters, 1994, 16, 777-782.	2.2	2
311	Insertion of a 27 amino acid viral peptide in different zones ofEscherichia coliβ-galactosidase: Effects on the enzyme activity. FEMS Microbiology Letters, 1994, 123, 107-112.	1.8	19
312	Ammonium-Mediated Reduction of Plasmid Copy Number and Recombinant Gene Expression in Escherichia coli. Biotechnology Progress, 1994, 10, 648-651.	2.6	16
313	Uses of β-galactosidase tag in on-line monitoring production of fusion proteins and gene expression in Escherichia coli. Enzyme and Microbial Technology, 1993, 15, 66-71.	3.2	24
314	Conditions for a continuous production of transient microbial products in a two-stage fermentation system. Biotechnology Letters, 1993, 15, 827.	2.2	4
315	Inhibition of CI857-controlled recombinant gene expression in Escherichia coli at very low concentrations of glucose. Biotechnology Letters, 1993, 15, 549-552.	2.2	4
316	Enhanced production of pL-controlled recombinant proteins and plasmid stability in Escherichia coli RecA+ strains. Journal of Biotechnology, 1993, 29, 299-306.	3.8	33
317	Fine regulation of cl857-controlled gene expression in continuous culture of recombinant Escherichia coli by temperature. Applied and Environmental Microbiology, 1993, 59, 3485-3487.	3.1	69
318	Transport properties in dense fluids and their binary mixtures. Fluid Phase Equilibria, 1992, 79, 277-288.	2.5	1
319	SOS system induction in Escherichia coli cells with distinct levels of ribonucleotide reductase activity. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1992, 281, 137-141.	1.1	1
320	Simultaneous on line monitoring of intracellular β-galactosidase activity and biomass using flow injection analysis inEscherichia coli batch fermentations. Biotechnology Letters, 1992, 6, 213-218.	0.5	8
321	Fixation of mutations at the VP1 gene of foot-and-mouth disease virus. Can quasispecies define a transient molecular clock?. Gene, 1991, 103, 147-153.	2.2	44
322	A model for continuous production of thermally induced recombinant proteins. Biotechnology Letters, 1991, 13, 249-254.	2.2	1
323	Molecular cloning and expression of the VP1 gene of foot-and-mouth disease virus C1 in E. coli: effect on bacterial cell viability. Applied Microbiology and Biotechnology, 1991, 35, 788-792.	3.6	21
324	Assay of ?-galactosidase activity by Flow Injection Analysis (FIA). Biotechnology Letters, 1991, 5, 389.	0.5	3

#	Article	IF	CITATIONS
325	Prediction of transport properties for Lennard-Jones fluids and their binary mixtures using the effective-diameter hard-sphere kinetic theory. Molecular Physics, 1991, 74, 1315-1334.	1.7	11
326	Evidence for a specific regulation of recA gene transcription in Escherichia coli. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1988, 199, 123-130.	1.0	3
327	Evidence for a specific regulation of recA gene transcription in Escherichia coli. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1988, 199, 123-130.	0.4	Ο
328	3D gene of foot-and-mouth disease virus. Journal of Molecular Biology, 1988, 204, 771-776.	4.2	27
329	Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. Journal of Virology, 1988, 62, 2050-2058.	3.4	146
330	Activated RecA protein may induce expression of a gene that is not controlled by the LexA repressor and whose function is required for mutagenesis and repair of UV-irradiated bacteriophage lambda. Journal of Bacteriology, 1987, 169, 4816-4821.	2.2	16
331	Induction of the SOS response by hydroxyurea in Escherichia coli K12. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1987, 192, 105-108.	1.1	18
332	ATP hydrolysis during SOS induction in Escherichia coli. Journal of Bacteriology, 1986, 167, 1055-1057.	2.2	22
333	Expression of the SOS system in Escherichia coli growing under nitrate respiration conditions. Antonie Van Leeuwenhoek, 1986, 52, 63-74.	1.7	1
334	ATP Production after ultraviolet irradiation inEscherichia coli. Current Microbiology, 1986, 14, 31-34.	2.2	9
335	Effect of P22-mediated Receptor Release and of Phage DNA Injection on Cell Viability of Salmonella typhimurium. Journal of General Virology, 1986, 67, 2561-2564.	2.9	Ο
336	Effect of Adenine, Cytidine and Guanosine on the Expression of the SOS System in Escherichia coli. Microbiology (United Kingdom), 1985, 131, 113-118.	1.8	5
337	Changes in ATP Concentration in Escherichia coli during Induction of the SOS System by Mitomycin C and Bleomycin. Microbiology (United Kingdom), 1984, 130, 2247-2251.	1.8	12
338	Further characterization of the expression of SOS functions in recA430 mutants of Escherichia coli. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1983, 121, 171-175.	1.1	8
339	Evolution of cellular ATP concentration after UV-mediated induction of SOS system in Escherichiacoli. Biochemical and Biophysical Research Communications, 1983, 117, 556-561.	2.1	36
340	Indirect induction of SOS functions in Salmonella typhimurium. Antonie Van Leeuwenhoek, 1983, 49, 471-484.	1.7	5
341	Cell death induced by phage at high multiplicity of infection is not due to lysis inSalmonella typhimurium. FEMS Microbiology Letters, 1982, 15, 291-294.	1.8	1
342	Proteine Bolognese. Modelling in Science Education and Learning, 0, 4, 159.	0.2	0