David A Hume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3647902/publications.pdf Version: 2024-02-01

		1463	1715
389	52,649	107	213
papers	citations	h-index	g-index
100	100	40.0	60500
423	423	423	62500
all docs	docs citations	times ranked	citing authors

Ολυίο Δ Ημμε

#	Article	IF	CITATIONS
1	Interferon-Î ³ : an overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 2004, 75, 163-189.	3.3	3,315
2	Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. Immunity, 2013, 38, 79-91.	14.3	2,528
3	An atlas of active enhancers across human cell types and tissues. Nature, 2014, 507, 455-461.	27.8	2,269
4	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838
5	Antisense Transcription in the Mammalian Transcriptome. Science, 2005, 309, 1564-1566.	12.6	1,553
6	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420, 563-573.	27.8	1,548
7	Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genetics, 2006, 38, 626-635.	21.4	1,201
8	Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience, 1985, 15, 313-326.	2.3	855
9	HIN-200 Proteins Regulate Caspase Activation in Response to Foreign Cytoplasmic DNA. Science, 2009, 323, 1057-1060.	12.6	737
10	The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 2009, 41, 563-571.	21.4	731
11	Endotoxin signal transduction in macrophages. Journal of Leukocyte Biology, 1996, 60, 8-26.	3.3	717
12	IFITM3 restricts the morbidity and mortality associated with influenza. Nature, 2012, 484, 519-523.	27.8	668
13	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 140, 744-752.	28.9	667
14	Functional annotation of a full-length mouse cDNA collection. Nature, 2001, 409, 685-690.	27.8	653
15	Somatic retrotransposition alters the genetic landscape of the human brain. Nature, 2011, 479, 534-537.	27.8	621
16	A macrophage colony-stimulating factor receptor–green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood, 2003, 101, 1155-1163.	1.4	605
17	Osteal Tissue Macrophages Are Intercalated throughout Human and Mouse Bone Lining Tissues and Regulate Osteoblast Function In Vitro and In Vivo. Journal of Immunology, 2008, 181, 1232-1244.	0.8	597
18	Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood, 2012, 119, 1810-1820.	1.4	562

David A Hume

#	Article	IF	CITATIONS
19	The mononuclear phagocyte system. Current Opinion in Immunology, 2006, 18, 49-53.	5.5	524
20	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	12.6	517
21	Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 2005, 16, 11-19.	5.5	461
22	Unravelling mononuclear phagocyte heterogeneity. Nature Reviews Immunology, 2010, 10, 453-460.	22.7	461
23	Macrophages as APC and the Dendritic Cell Myth. Journal of Immunology, 2008, 181, 5829-5835.	0.8	439
24	Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nature Reviews Genetics, 2007, 8, 424-436.	16.3	435
25	An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood, 2010, 116, 3955-3963.	1.4	410
26	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
27	Expression analysis of G Protein-Coupled Receptors in mouse macrophages. Immunome Research, 2008, 4, 5.	0.1	400
28	The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs Journal of Experimental Medicine, 1983, 158, 1522-1536.	8.5	394
29	Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. Journal of Bone and Mineral Research, 2011, 26, 1517-1532.	2.8	394
30	Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science Translational Medicine, 2015, 7, 304ra142.	12.4	394
31	The Macrophage-Inducible C-Type Lectin, Mincle, Is an Essential Component of the Innate Immune Response to <i>Candida albicans</i> . Journal of Immunology, 2008, 180, 7404-7413.	0.8	393
32	CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. Journal of Experimental Medicine, 2009, 206, 595-606.	8.5	364
33	An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics, 2013, 14, 632.	2.8	347
34	Apoptotic cell removal in development and tissue homeostasis. Trends in Immunology, 2006, 27, 244-250.	6.8	343
35	IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. Journal of Experimental Medicine, 2013, 210, 2477-2491.	8.5	337
36	Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E944-53.	7.1	332

#	Article	IF	CITATIONS
37	Ras-Mediated Phosphorylation of a Conserved Threonine Residue Enhances the Transactivation Activities of c-Ets1 and c-Ets2. Molecular and Cellular Biology, 1996, 16, 538-547.	2.3	328
38	Tiny RNAs associated with transcription start sites in animals. Nature Genetics, 2009, 41, 572-578.	21.4	327
39	The Many Alternative Faces of Macrophage Activation. Frontiers in Immunology, 2015, 6, 370.	4.8	281
40	Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology, 2011, 53, 2003-2015.	7.3	278
41	Signal integration between IFNÎ ³ and TLR signalling pathways in macrophages. Immunobiology, 2006, 211, 511-524.	1.9	265
42	The mononuclear phagocyte system revisited. Journal of Leukocyte Biology, 2002, 72, 621-7.	3.3	264
43	Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia, 2010, 24, 460-466.	7.2	229
44	LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB Journal, 2006, 20, 1315-1327.	0.5	210
45	A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genetics, 2017, 13, e1006997.	3.5	210
46	Structural and functional annotation of the porcine immunome. BMC Genomics, 2013, 14, 332.	2.8	203
47	A Novel Mouse Model of Inflammatory Bowel Disease Links Mammalian Target of Rapamycin-Dependent Hyperproliferation of Colonic Epithelium to Inflammation-Associated Tumorigenesis. American Journal of Pathology, 2010, 176, 952-967.	3.8	202
48	A gene expression atlas of the domestic pig. BMC Biology, 2012, 10, 90.	3.8	199
49	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	5.3	195
50	Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r–EGFP transgene reporter. Developmental Biology, 2007, 308, 232-246.	2.0	194
51	Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone, 2000, 27, 575-584.	2.9	193
52	Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Identification of resident macrophages in renal medullary and cortical interstitium and the juxtaglomerular complex. Journal of Experimental Medicine, 1983, 157, 1704-1709.	8.5	191
53	<i>Gpnmb</i> Is Induced in Macrophages by IFN-γ and Lipopolysaccharide and Acts as a Feedback Regulator of Proinflammatory Responses. Journal of Immunology, 2007, 178, 6557-6566.	0.8	191
54	Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nature Communications, 2019, 10, 3215.	12.8	191

David A Hume

#	Article	IF	CITATIONS
55	Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood, 2000, 96, 2323-2328.	1.4	188
56	Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunology, 2008, 1, 432-441.	6.0	188
57	The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends in Immunology, 2019, 40, 98-112.	6.8	188
58	An improved pig reference genome sequence to enable pig genetics and genomics research. GigaScience, 2020, 9, .	6.4	187
59	The Colony-Stimulating Factor 1 Receptor Is Expressed on Dendritic Cells during Differentiation and Regulates Their Expansion. Journal of Immunology, 2005, 175, 1399-1405.	0.8	179
60	Pivotal Advance: Avian colony-stimulating factor 1 (<i>CSF-1</i>), interleukin-34 (<i>IL-34</i>), and <i>CSF-1</i> receptor genes and gene products. Journal of Leukocyte Biology, 2010, 87, 753-764.	3.3	173
61	The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. Journal of Leukocyte Biology, 2011, 89, 855-871.	3.3	173
62	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	14.3	172
63	Crystal structure of mammalian purple acid phosphatase. Structure, 1999, 7, 757-767.	3.3	171
64	Immune Cell Gene Signatures for Profiling the Microenvironment of Solid Tumors. Cancer Immunology Research, 2018, 6, 1388-1400.	3.4	169
65	Impact of Alternative Initiation, Splicing, and Termination on the Diversity of the mRNA Transcripts Encoded by the Mouse Transcriptome. Genome Research, 2003, 13, 1290-1300.	5.5	168
66	Osteal macrophages: A new twist on coupling during bone dynamics. Bone, 2008, 43, 976-982.	2.9	166
67	Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs. PLoS Genetics, 2006, 2, e62.	3.5	165
68	Exome Sequencing: Current and Future Perspectives. G3: Genes, Genomes, Genetics, 2015, 5, 1543-1550.	1.8	165
69	The Molecular Basis for the Lack of Immunostimulatory Activity of Vertebrate DNA. Journal of Immunology, 2003, 170, 3614-3620.	0.8	164
70	The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: Macrophages associated with epithelia. The Anatomical Record, 1984, 210, 503-512.	1.8	163
71	Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS. Journal of Leukocyte Biology, 2010, 87, 1103-1114.	3.3	163
72	Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS Genetics, 2017, 13, e1006641.	3.5	161

#	Article	IF	CITATIONS
73	Replicable and Coupled Changes in Innate and Adaptive Immune Gene Expression in Two Case-Control Studies of Blood Microarrays in Major Depressive Disorder. Biological Psychiatry, 2018, 83, 70-80.	1.3	158
74	Transcription and enhancer profiling in human monocyte subsets. Blood, 2014, 123, e90-e99.	1.4	157
75	Differentiation of the Mononuclear Phagocyte System During Mouse Embryogenesis: The Role of Transcription Factor PU.1. Blood, 1999, 94, 127-138.	1.4	156
76	CSF1 Restores Innate Immunity After Liver Injury in Mice andÂSerum Levels Indicate Outcomes of Patients With AcuteÂLiver Failure. Gastroenterology, 2015, 149, 1896-1909.e14.	1.3	156
77	Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. Journal of Leukocyte Biology, 2007, 82, 111-123.	3.3	155
78	Histone deacetylase inhibitors decrease Tollâ€like receptorâ€mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology, 2007, 122, 596-606.	4.4	155
79	The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nature Communications, 2018, 9, 1272.	12.8	155
80	Targeting a Complex Transcriptome: The Construction of the Mouse Full-Length cDNA Encyclopedia. Genome Research, 2003, 13, 1273-1289.	5.5	154
81	Probing the S100 protein family through genomic and functional analysis. Genomics, 2004, 84, 10-22.	2.9	153
82	Homeostasis in the mononuclear phagocyte system. Trends in Immunology, 2014, 35, 358-367.	6.8	153
83	ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed in Mammalian Monocyte-Macrophages. Frontiers in Immunology, 2018, 9, 2246.	4.8	149
84	Pig Bone Marrow-Derived Macrophages Resemble Human Macrophages in Their Response to Bacterial Lipopolysaccharide. Journal of Immunology, 2012, 188, 3382-3394.	0.8	147
85	Aerobic glycolysis and lymphocyte transformation. Biochemical Journal, 1978, 174, 703-709.	3.7	146
86	Renal Structural and Functional Repair in a Mouse Model of Reversal of Ureteral Obstruction. Journal of the American Society of Nephrology: JASN, 2005, 16, 3623-3630.	6.1	146
87	Transgenic Mice Overexpressing Tartrate-Resistant Acid Phosphatase Exhibit an Increased Rate of Bone Turnover. Journal of Bone and Mineral Research, 2000, 15, 103-110.	2.8	142
88	Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene, 2000, 250, 117-125.	2.2	141
89	Syntaxin 6 and Vti1b Form a Novel SNARE Complex, Which Is Up-regulated in Activated Macrophages to Facilitate Exocytosis of Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2005, 280, 10478-10483.	3.4	140
90	Origins and functions of phagocytes in the embryo. Experimental Hematology, 2000, 28, 601-611.	0.4	136

#	Article	IF	CITATIONS
91	Rasputin, more promiscuous than ever: a review of G3BP. International Journal of Developmental Biology, 2004, 48, 1065-1077.	0.6	133
92	Identification of Putative Noncoding RNAs Among the RIKEN Mouse Full-Length cDNA Collection. Genome Research, 2003, 13, 1301-1306.	5.5	129
93	Cutting Edge: Species-Specific TLR9-Mediated Recognition of CpG and Non-CpG Phosphorothioate-Modified Oligonucleotides. Journal of Immunology, 2005, 174, 605-608.	0.8	129
94	Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunology and Cell Biology, 1994, 72, 177-185.	2.3	125
95	Regulation of Urokinase-Type Plasminogen Activator Gene Transcription by Macrophage Colony-Stimulating Factor. Molecular and Cellular Biology, 1995, 15, 3430-3441.	2.3	125
96	Transcriptional network dynamics in macrophage activation. Genomics, 2006, 88, 133-142.	2.9	125
97	Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity. Journal of Leukocyte Biology, 2010, 89, 525-538.	3.3	125
98	Colony-Stimulating Factor-1 Promotes Kidney Growth and Repair via Alteration of Macrophage Responses. American Journal of Pathology, 2011, 179, 1243-1256.	3.8	124
99	CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials, 2019, 196, 51-66.	11.4	124
100	Species-Specific Transcriptional Regulation of Genes Involved in Nitric Oxide Production and Arginine Metabolism in Macrophages. ImmunoHorizons, 2018, 2, 27-37.	1.8	124
101	Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes and Development, 2002, 16, 1721-1737.	5.9	119
102	Genetic control of the innate immune response. BMC Immunology, 2003, 4, 5.	2.2	119
103	The Microphthalmia Transcription Factor Regulates Expression of the Tartrate-Resistant Acid Phosphatase Gene During Terminal Differentiation of Osteoclasts. Journal of Bone and Mineral Research, 2000, 15, 451-460.	2.8	117
104	Phosphorothioate Backbone Modification Modulates Macrophage Activation by CpG DNA. Journal of Immunology, 2000, 165, 4165-4173.	0.8	116
105	Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the <i>Csf1r</i> Locus. Journal of Immunology, 2018, 201, 2683-2699.	0.8	114
106	Electroporation and DNAâ€dependent cell death in murine macrophages. Immunology and Cell Biology, 1993, 71, 75-85.	2.3	113
107	Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes Journal of Experimental Medicine, 1994, 180, 2309-2319.	8.5	113
108	S100A8: emerging functions and regulation. Journal of Leukocyte Biology, 1999, 66, 549-556.	3.3	112

#	Article	IF	CITATIONS
109	Functional clustering and lineage markers: Insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics, 2010, 95, 328-338.	2.9	112
110	Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS ONE, 2017, 12, e0184890.	2.5	109
111	Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state. BMC Immunology, 2001, 2, 11.	2.2	108
112	Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. Development (Cambridge), 2014, 141, 3255-3265.	2.5	107
113	Genetic and Physical Interactions betweenMicrophthalmia Transcription Factor and PU.1 Are Necessary for Osteoclast Gene Expression and Differentiation. Journal of Biological Chemistry, 2001, 276, 36703-36710.	3.4	105
114	CAT2-mediated l-arginine transport and nitric oxide production in activated macrophages. Biochemical Journal, 1999, 340, 549-553.	3.7	104
115	Histone Deacetylase Inhibitor Reduces Monocyte Adhesion to Endothelium Through the Suppression of Vascular Cell Adhesion Molecule-1 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2652-2659.	2.4	103
116	G-protein-coupled receptor expression, function, and signaling in macrophages. Journal of Leukocyte Biology, 2007, 82, 16-32.	3.3	103
117	Optimal conditions for proliferation of bone marrow-derived mouse macrophages in culture: The roles of CSF-1, serum, Ca2+, and adherence. Journal of Cellular Physiology, 1983, 117, 189-194.	4.1	102
118	Localization and Post-Golgi Trafficking of Tumor Necrosis Factor-alpha in Macrophages. Journal of Interferon and Cytokine Research, 2000, 20, 427-438.	1.2	101
119	The JNK Are Important for Development and Survival of Macrophages. Journal of Immunology, 2006, 176, 2219-2228.	0.8	100
120	Persistent Activation of Mitogen-Activated Protein Kinases p42 and p44 and ets-2 Phosphorylation in Response to Colony-Stimulating Factor 1/c-fms Signaling. Molecular and Cellular Biology, 1998, 18, 5148-5156.	2.3	98
121	Immune surveillance of the lung by migrating tissue monocytes. ELife, 2015, 4, e07847.	6.0	98
122	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	1.1	97
123	Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Seminars in Cell and Developmental Biology, 2017, 61, 12-21.	5.0	97
124	Phenotypic impacts of CSF1R deficiencies in humans and model organisms. Journal of Leukocyte Biology, 2020, 107, 205-219.	3.3	97
125	Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma. Current Biology, 2015, 25, 577-588.	3.9	96
126	Mice and Men: Their Promoter Properties. PLoS Genetics, 2006, 2, e54.	3.5	95

#	Article	IF	CITATIONS
127	Generation of Diversity in the Innate Immune System: Macrophage Heterogeneity Arises from Gene-Autonomous Transcriptional Probability of Individual Inducible Genes. Journal of Immunology, 2002, 168, 44-50.	0.8	94
128	Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biology, 2020, 18, e3000859.	5.6	94
129	Colony-Stimulating Factor-1 Suppresses Responses to CpG DNA and Expression of Toll-Like Receptor 9 but Enhances Responses to Lipopolysaccharide in Murine Macrophages. Journal of Immunology, 2002, 168, 392-399.	0.8	93
130	A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics, 2008, 91, 281-288.	2.9	92
131	Comparative Analysis of Monocyte Subsets in the Pig. Journal of Immunology, 2013, 190, 6389-6396.	0.8	91
132	Cloning and Characterization of the Murine Genes for bHLH-ZIP Transcription Factors TFEC and TFEB Reveal a Common Gene Organization for All MiT Subfamily Members. Genomics, 1999, 56, 111-120.	2.9	90
133	Systematic Characterization of the Zinc-Finger-Containing Proteins in the Mouse Transcriptome. Genome Research, 2003, 13, 1430-1442.	5.5	89
134	Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages. Journal of Immunology, 2016, 196, 813-822.	0.8	89
135	Inflammation suppressor genes: please switch out all the lights. Journal of Leukocyte Biology, 2005, 78, 9-13.	3.3	88
136	Characterisation of a Novel Fc Conjugate of Macrophage Colony-stimulating Factor. Molecular Therapy, 2014, 22, 1580-1592.	8.2	88
137	Data-driven normalization strategies for high-throughput quantitative RT-PCR. BMC Bioinformatics, 2009, 10, 110.	2.6	86
138	CSF-1, IGF-1, and the control of postnatal growth and development. Journal of Leukocyte Biology, 2010, 88, 475-481.	3.3	86
139	Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. Journal of Leukocyte Biology, 2014, 96, 265-274.	3.3	86
140	Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genomics, 2018, 19, 594.	2.8	86
141	Regulation of Rat Cytochrome P450C24 (CYP24) Gene Expression. Journal of Biological Chemistry, 2000, 275, 47-55.	3.4	84
142	The impact of breed and tissue compartment on the response of pig macrophages to lipopolysaccharide. BMC Genomics, 2013, 14, 581.	2.8	83
143	IFN-Î ³ Primes Macrophage Responses to Bacterial DNA. Journal of Interferon and Cytokine Research, 1998, 18, 263-271.	1.2	82
144	Cellular Plasticity of Inflammatory Myeloid Cells in the Peritoneal Foreign Body Response. American Journal of Pathology, 2010, 176, 369-380.	3.8	82

ΔΑνί Α Ημμε

#	Article	IF	CITATIONS
145	Transcription Factor Tfec Contributes to the IL-4-Inducible Expression of a Small Group of Genes in Mouse Macrophages Including the Granulocyte Colony-Stimulating Factor Receptor. Journal of Immunology, 2005, 174, 7111-7122.	0.8	81
146	Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology, 2010, 215, 724-736.	1.9	81
147	Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages. Journal of Biological Chemistry, 2013, 288, 25362-25374.	3.4	81
148	Assembly of a parts list of the human mitotic cell cycle machinery. Journal of Molecular Cell Biology, 2019, 11, 703-718.	3.3	80
149	Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene, 2008, 413, 32-41.	2.2	78
150	CCR2-dependent monocyte-derived macrophages resolve inflammation and restore gut motility in postoperative ileus. Gut, 2017, 66, 2098-2109.	12.1	78
151	Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using <i>Csf1r</i> Gal4VP16/UAS-ECFP double-transgenic mice. Journal of Leukocyte Biology, 2008, 83, 430-433.	3.3	77
152	Concordant Epigenetic Silencing of Transforming Growth Factor-β Signaling Pathway Genes Occurs Early in Breast Carcinogenesis. Cancer Research, 2007, 67, 11517-11527.	0.9	76
153	Docosahexaenoic acid attenuates microglial activation and delays early retinal degeneration. Journal of Neurochemistry, 2009, 110, 1863-1875.	3.9	75
154	<i>Csf1r</i> -mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System. Journal of Immunology, 2018, 200, 2209-2223.	0.8	75
155	The Mouse Secretome: Functional Classification of the Proteins Secreted Into the Extracellular Environment. Genome Research, 2003, 13, 1350-1359.	5.5	73
156	The Expression of Clcn7 and Ostm1 in Osteoclasts Is Coregulated by Microphthalmia Transcription Factor. Journal of Biological Chemistry, 2007, 282, 1891-1904.	3.4	73
157	The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Genome Biology, 2009, 10, R40.	9.6	73
158	An Inflammatory Role for the Mammalian Carboxypeptidase Inhibitor Latexin: Relationship to Cystatins and the Tumor Suppressor TIG1. Structure, 2005, 13, 309-317.	3.3	71
159	Differences in Macrophage Activation by Bacterial DNA and CpG-Containing Oligonucleotides. Journal of Immunology, 2005, 175, 3569-3576.	0.8	71
160	Structural basis for recruitment of tandem hotdog domains in acyl-CoA thioesterase 7 and its role in inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10382-10387.	7.1	71
161	Interaction between PU.1 and Another Ets Family Transcription Factor Promotes Macrophage-specific Basal Transcription Initiation. Journal of Biological Chemistry, 1998, 273, 6662-6669.	3.4	70
162	Systematic Expression Profiling of the Mouse Transcriptome Using RIKEN cDNA Microarrays. Genome Research, 2003, 13, 1318-1323.	5.5	69

#	Article	IF	CITATIONS
163	Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO Journal, 2004, 23, 4275-4285.	7.8	69
164	A CSFâ€l receptor kinase inhibitor targets effector functions and inhibits proâ€inflammatory cytokine production from murine macrophage populations. FASEB Journal, 2006, 20, 1921-1923.	0.5	69
165	Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. Journal of Leukocyte Biology, 2009, 85, 278-288.	3.3	69
166	Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood, 2018, 132, 735-749.	1.4	69
167	ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice. Molecular and Cellular Biology, 2000, 20, 8026-8034.	2.3	67
168	FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions. Genome Biology, 2009, 10, R39.	9.6	67
169	Macrophage Activation and Differentiation Signals Regulate Schlafen-4 Gene Expression: Evidence for Schlafen-4 as a Modulator of Myelopoiesis. PLoS ONE, 2011, 6, e15723.	2.5	67
170	Cooperation of two PEA3/AP1 sites in uPA gene induction by TPA and FGF-2. Gene, 1997, 201, 179-187.	2.2	66
171	Alternate transcription of the Toll-like receptor signaling cascade. Genome Biology, 2006, 7, R10.	9.6	66
172	Macrophage-Specific Expression of Human Lysosomal Acid Lipase Corrects Inflammation and Pathogenic Phenotypes in lalâ^'/â^' Mice. American Journal of Pathology, 2006, 169, 916-926.	3.8	66
173	Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clinical Science, 2017, 131, 2161-2182.	4.3	66
174	Immunohistochemical Characterisation of Macrophages in Human Liver and Gastrointestinal Tract: Expression of CD4, HLA-DR, OKM1, and the Mature Macrophage Marker 25F9 in Normal and Diseased Tissue. Journal of Leukocyte Biology, 1987, 42, 474-484.	3.3	65
175	Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes. Gene, 2000, 255, 419-424.	2.2	65
176	Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Archives of Biochemistry and Biophysics, 2005, 439, 154-164.	3.0	65
177	Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome. Genetics Selection Evolution, 2018, 50, 20.	3.0	65
178	Can DCs be distinguished from macrophages by molecular signatures?. Nature Immunology, 2013, 14, 187-189.	14.5	64
179	The transcriptional regulation of the Colony-Stimulating Factor 1 Receptor (csf1r) gene during hematopoiesis. Frontiers in Bioscience - Landmark, 2008, 13, 549.	3.0	64
180	CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice. Blood, 2013, 122, 674-683.	1.4	63

#	Article	IF	CITATIONS
181	CpG DNA Activates Survival in Murine Macrophages through TLR9 and the Phosphatidylinositol 3-Kinase-Akt Pathway. Journal of Immunology, 2006, 177, 4473-4480.	0.8	62
182	Transcriptomic analysis of mononuclear phagocyte differentiation and activation. Immunological Reviews, 2014, 262, 74-84.	6.0	62
183	The development and maintenance of the mononuclear phagocyte system of the chick is controlled by signals from the macrophage colony-stimulating factor receptor. BMC Biology, 2015, 13, 12.	3.8	62
184	The future of animal production: improving productivity and sustainability. Journal of Agricultural Science, 2011, 149, 9-16.	1.3	61
185	A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System. Journal of Immunology, 2020, 205, 3154-3166.	0.8	59
186	LPS regulates a set of genes in primary murine macrophages by antagonising CSF-1 action. Immunobiology, 2005, 210, 97-107.	1.9	58
187	Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochemical and Biophysical Research Communications, 2005, 331, 120-126.	2.1	57
188	Resting and injuryâ€induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunology and Cell Biology, 2017, 95, 7-16.	2.3	56
189	Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Frontiers in Cell and Developmental Biology, 2019, 7, 250.	3.7	56
190	Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. American Journal of Physiology - Renal Physiology, 2016, 311, G533-G547.	3.4	55
191	Multiple tissue-specific promoters control expression of the murine tartrate-resistant acid phosphatase gene. Gene, 2003, 307, 111-123.	2.2	54
192	Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases. Archives of Biochemistry and Biophysics, 2004, 424, 154-162.	3.0	54
193	Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. Journal of Leukocyte Biology, 2014, 96, 167-183.	3.3	54
194	Constitutive expression of the urokinase plasminogen activator gene in murine RAW264 macrophages involves distal and 5â€2 non-coding sequences that are conserved between mouse and pig. Nucleic Acids Research, 1991, 19, 6839-6847.	14.5	53
195	Regulation of the plasminogen activator inhibitor-2 (PAI-2) gene in murine macrophages. Demonstration of a novel pattern of responsiveness to bacterial endotoxin. Journal of Leukocyte Biology, 1999, 66, 172-182.	3.3	53
196	G551D Cystic Fibrosis Mice Exhibit Abnormal Regulation of Inflammation in Lungs and Macrophages. Journal of Immunology, 2000, 164, 3870-3877.	0.8	53
197	S100A8/S100A9 and their association with cartilage and bone. Journal of Molecular Histology, 2007, 38, 381-391.	2.2	53
198	Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood, 2000, 96, 2323-2328.	1.4	53

#	Article	IF	CITATIONS
199	Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase. Gene, 2006, 377, 12-20.	2.2	52
200	CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function. Scientific Reports, 2013, 3, 3013.	3.3	52
201	Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA. Developmental and Comparative Immunology, 2016, 63, 206-212.	2.3	52
202	The correlation between plasminogen activator activity and thymidine incorporation in mouse bone marrow-derived macrophages. Experimental Cell Research, 1984, 150, 347-355.	2.6	50
203	Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Human Molecular Genetics, 2002, 11, 1059-1067.	2.9	50
204	Identification and Analysis of Chromodomain-Containing Proteins Encoded in the Mouse Transcriptome. Genome Research, 2003, 13, 1416-1429.	5.5	50
205	S100A8 Chemotactic Protein Is Abundantly Increased, but Only a Minor Contributor to LPS-Induced, Steroid Resistant Neutrophilic Lung Inflammation in Vivo. Journal of Proteome Research, 2005, 4, 136-145.	3.7	50
206	Jmjd6, a JmjC Dioxygenase with Many Interaction Partners and Pleiotropic Functions. Frontiers in Genetics, 2017, 8, 32.	2.3	49
207	A Gene Expression Atlas of the Domestic Water Buffalo (Bubalus bubalis). Frontiers in Genetics, 2019, 10, 668.	2.3	49
208	Regulated Expression of PTPRJ/CD148 and an Antisense Long Noncoding RNA in Macrophages by Proinflammatory Stimuli. PLoS ONE, 2013, 8, e68306.	2.5	48
209	Comprehensive Transcriptional Profiling of the Gastrointestinal Tract of Ruminants from Birth to Adulthood Reveals Strong Developmental Stage Specific Gene Expression. G3: Genes, Genomes, Genetics, 2019, 9, 359-373.	1.8	48
210	Network Analysis Reveals Distinct Clinical Syndromes Underlying Acute Mountain Sickness. PLoS ONE, 2014, 9, e81229.	2.5	48
211	The MacBlue Binary Transgene (csf1r-gal4VP16/UAS-ECFP) Provides a Novel Marker for Visualisation of Subsets of Monocytes, Macrophages and Dendritic Cells and Responsiveness to CSF1 Administration. PLoS ONE, 2014, 9, e105429.	2.5	48
212	Absence of microglia promotes diverse pathologies and early lethality in Alzheimer's disease mice. Cell Reports, 2022, 39, 110961.	6.4	48
213	Recombinant Human and Mouse Purple Acid Phosphatases: Expression and Characterization. Archives of Biochemistry and Biophysics, 1997, 345, 230-236.	3.0	47
214	Characterization of Subpopulations of Chicken Mononuclear Phagocytes That Express TIM4 and CSF1R. Journal of Immunology, 2019, 202, 1186-1199.	0.8	47
215	Activation of 3-O-methyl-glucose transport in rat thymus lymphocytes by concanavalin A temperature and calcium ion dependence and sensitivity to puromycin but not to cycloheximide. Biochimica Et Biophysica Acta - General Subjects, 1977, 500, 89-102.	2.4	46
216	Isolation and characterization of the genes encoding mouse and human type-5 acid phosphatase. Gene, 1993, 130, 201-207.	2.2	46

#	Article	IF	CITATIONS
217	NF-IL6 and HSF1 Have Mutually Antagonistic Effects on Transcription in Monocytic Cells. Biochemical and Biophysical Research Communications, 2002, 291, 1071-1080.	2.1	45
218	The Runx1 transcription factor controls CSF-1-dependent and -independent growth and survival of macrophages. Oncogene, 2005, 24, 5278-5286.	5.9	45
219	Novel Neutrophil-Derived Proteins in Bronchoalveolar Lavage Fluid Indicate an Exaggerated Inflammatory Response in Pediatric Cystic Fibrosis Patients. Clinical Chemistry, 2007, 53, 1782-1791.	3.2	45
220	Differential Effects of CpG DNA on IFN-β Induction and STAT1 Activation in Murine Macrophages versus Dendritic Cells: Alternatively Activated STAT1 Negatively Regulates TLR Signaling in Macrophages. Journal of Immunology, 2007, 179, 3495-3503.	0.8	44
221	Systems biology of transcription control in macrophages. BioEssays, 2007, 29, 1215-1226.	2.5	44
222	CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genetics, 2021, 17, e1009605.	3.5	44
223	Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse. Genome Research, 2003, 13, 1443-1454.	5.5	43
224	Glucocorticoid Receptor Binding Induces Rapid and Prolonged Large-Scale Chromatin Decompaction at Multiple Target Loci. Cell Reports, 2017, 21, 3022-3031.	6.4	43
225	Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34. Cytokine, 2012, 60, 793-805.	3.2	42
226	Functional Annotation of the Transcriptome of the Pig, Sus scrofa, Based Upon Network Analysis of an RNAseq Transcriptional Atlas. Frontiers in Genetics, 2019, 10, 1355.	2.3	42
227	Continued Discovery of Transcriptional Units Expressed in Cells of the Mouse Mononuclear Phagocyte Lineage. Genome Research, 2003, 13, 1360-1365.	5.5	41
228	PU.1 and ICSBP control constitutive and IFN-γ-regulated Tlr9 gene expression in mouse macrophages. Journal of Leukocyte Biology, 2007, 81, 1577-1590.	3.3	41
229	Phenotypic and genetic variation in the response of chickens to Eimeria tenella induced coccidiosis. Genetics Selection Evolution, 2018, 50, 63.	3.0	41
230	Decreased Growth Hormone Receptor Expression in Long Bones from Toothless (Osteopetrotic) Rats and Restoration by Treatment with Colony-Stimulating Factor-1. Growth Factors, 1996, 13, 1-10.	1.7	40
231	CAT2-mediated L-arginine transport and nitric oxide production in activated macrophages. Biochemical Journal, 1999, 340, 549.	3.7	40
232	Effector ExoU from the Type III Secretion System Is an Important Modulator of Gene Expression in Lung Epithelial Cells in Response to Pseudomonas aeruginosa Infection. Infection and Immunity, 2003, 71, 6035-6044.	2.2	40
233	Defining the anatomical localisation of subsets of the murine mononuclear phagocyte system using integrin alpha X (Itgax, CD11c) and colony stimulating factor 1 receptor (Csf1r, CD115) expression fails to discriminate dendritic cells from macrophages. Immunobiology, 2011, 216, 1228-1237.	1.9	40
234	Transcriptional switching in macrophages associated with the peritoneal foreign body response. Immunology and Cell Biology, 2014, 92, 518-526.	2.3	40

#	Article	IF	CITATIONS
235	Integration of quantitated expression estimates from polyA-selected and rRNA-depleted RNA-seq libraries. BMC Bioinformatics, 2017, 18, 301.	2.6	40
236	Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines: implications for phenotypic variability in Marfan syndrome. European Journal of Human Genetics, 2010, 18, 1209-1215.	2.8	39
237	Coexpression analysis of large cancer datasets provides insight into the cellular phenotypes of the tumour microenvironment. BMC Genomics, 2013, 14, 469.	2.8	39
238	Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Seminars in Immunology, 2021, 54, 101509.	5.6	39
239	Elimination of Reference Mapping Bias Reveals Robust Immune Related Allele-Specific Expression in Crossbred Sheep. Frontiers in Genetics, 2019, 10, 863.	2.3	38
240	CSF-1 as a regulator of macrophage activation and immune responses. Archivum Immunologiae Et Therapiae Experimentalis, 2003, 51, 169-77.	2.3	38
241	How Do You See CG?. Cell, 2000, 103, 993-996.	28.9	37
242	Production and characterisation of a monoclonal antibody that recognises the chicken CSF1 receptor and confirms that expression is restricted to macrophage-lineage cells. Developmental and Comparative Immunology, 2014, 42, 278-285.	2.3	37
243	Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity. PLoS ONE, 2008, 3, e1713.	2.5	36
244	The equine alveolar macrophage: Functional and phenotypic comparisons with peritoneal macrophages. Veterinary Immunology and Immunopathology, 2013, 155, 219-228.	1.2	36
245	Genome-wide association studies of immune, disease and production traits in indigenous chicken ecotypes. Genetics Selection Evolution, 2016, 48, 74.	3.0	36
246	Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues. Cell Reports, 2021, 37, 110058.	6.4	36
247	Selective induction of the Notch ligand Jaggedâ€1 in macrophages by soluble egg antigen from <i>Schistosoma mansoni</i> involves ERK signalling. Immunology, 2009, 127, 326-337.	4.4	35
248	Transcriptional Regulation and Macrophage Differentiation. Microbiology Spectrum, 2016, 4, .	3.0	35
249	Identification of the macrophage-specific promoter signature in FANTOM5 mouse embryo developmental time course data. Journal of Leukocyte Biology, 2017, 102, 1081-1092.	3.3	35
250	Analysis of the impact of CSF-1 administration in adult rats using a novel <i>Csf1r</i> -mApple reporter gene. Journal of Leukocyte Biology, 2020, 107, 221-235.	3.3	35
251	CNS macrophages differentially rely on an intronic <i>Csf1r</i> enhancer for their development. Development (Cambridge), 2020, 147, .	2.5	35
252	Tumor-associated macrophage heterogeneity is driven by tissue territories in breast cancer. Cell Reports, 2022, 39, 110865.	6.4	35

#	Article	IF	CITATIONS
253	Heat shock enhances transcriptional activation of the murine inducible nitric oxide synthase gene. FASEB Journal, 2000, 14, 2393-2395.	0.5	34
254	Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System. Genome Research, 2003, 13, 1542-1551.	5.5	34
255	Cell-Autonomous Sex Differences in Gene Expression in Chicken Bone Marrow–Derived Macrophages. Journal of Immunology, 2015, 194, 2338-2344.	0.8	34
256	Detection of c-fms protooncogene in early mouse embryos by whole mount in situ hybridization indicates roles for macrophages in tissue remodelling. British Journal of Haematology, 1995, 90, 939-942.	2.5	33
257	The actions of bacterial DNA on murine macrophages. Journal of Leukocyte Biology, 1999, 66, 542-548.	3.3	33
258	A transcriptional perspective on human macrophage biology. Seminars in Immunology, 2015, 27, 44-50.	5.6	33
259	A chicken bioreactor for efficient production of functional cytokines. BMC Biotechnology, 2018, 18, 82.	3.3	33
260	The production of oxygen-centered radicals by Bacillus-Calmette-Guerin-activated macrophages. Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 763, 245-250.	4.1	32
261	Reduction of the in vitro pro-inflammatory response by macrophages to poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Biomaterials, 2006, 27, 4715-4725.	11.4	32
262	Macrophage colony-stimulating factor increases hepatic macrophage content, liver growth, and lipid accumulation in neonatal rats. American Journal of Physiology - Renal Physiology, 2018, 314, G388-G398.	3.4	32
263	The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate the tartrate-resistant acid phosphatase promoter. Journal of Leukocyte Biology, 2002, 71, 304-10.	3.3	32
264	The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells. Molecular Immunology, 2010, 47, 2295-2302.	2.2	31
265	Dissecting the Genomic Architecture of Resistance to Eimeria maxima Parasitism in the Chicken. Frontiers in Genetics, 2018, 9, 528.	2.3	31
266	Acute administration of ethanol suppresses pentylenetetrazole-induced c-fos expression in rat brain. Neuroscience Letters, 1990, 120, 271-274.	2.1	30
267	Involvement of ?-Aminobutyric Acid and N-Methyl-D-Aspartate Receptors in the Inhibitory Effect of Ethanol on Pentylenetetrazole-Induced c-fos Expression in Rat Brain. Journal of Neurochemistry, 1992, 59, 1309-1315.	3.9	29
268	Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets. Journal of Biological Chemistry, 2008, 283, 16187-16193.	3.4	29
269	Development of a DNA barcode tagging method for monitoring dynamic changes in gene expression by using an ultra high-throughput sequencer. BioTechniques, 2008, 45, 95-97.	1.8	29
270	Species-Specificity of Transcriptional Regulation and the Response to Lipopolysaccharide in Mammalian Macrophages. Frontiers in Cell and Developmental Biology, 2020, 8, 661.	3.7	29

#	Article	IF	CITATIONS
271	Analysis of homozygous and heterozygous Csf1r knockout in the rat as a model for understanding microglial function in brain development and the impacts of human CSF1R mutations. Neurobiology of Disease, 2021, 151, 105268.	4.4	29
272	Identification of Low-Confidence Regions in the Pig Reference Genome (Sscrofa10.2). Frontiers in Genetics, 2015, 6, 338.	2.3	28
273	Selective resistance of bone marrow-derived hemopoietic progenitor cells to gliotoxin Proceedings of the United States of America, 1987, 84, 3822-3825.	7.1	27
274	Plenary Perspective: The complexity of constitutive and inducible gene expression in mononuclear phagocytes. Journal of Leukocyte Biology, 2012, 92, 433-444.	3.3	27
275	Effects of anti-inflammatory drugs on the expression of tryptophan-metabolism genes by human macrophages. Journal of Leukocyte Biology, 2018, 103, 681-692.	3.3	27
276	Computational promoter analysis of mouse, rat and human antimicrobial peptide-coding genes. BMC Bioinformatics, 2006, 7, S8.	2.6	26
277	Regulation and function of macrophage colony-stimulating factor (CSF1) in the chicken immune system. Developmental and Comparative Immunology, 2020, 105, 103586.	2.3	25
278	The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Frontiers in Cell and Developmental Biology, 2020, 8, 498.	3.7	25
279	Therapeutic Targets in Inflammatory Disease. Current Medicinal Chemistry, 2005, 12, 2925-2929.	2.4	24
280	Identification of Disulfide-Containing Chemical Cross-Links in Proteins Using MALDI-TOF/TOF-Mass Spectrometry. Analytical Chemistry, 2008, 80, 5036-5043.	6.5	24
281	A conserved distal segment of the mouse CSF-1 receptor promoter is required for maximal expression of a reporter gene in macrophages and osteoclasts of transgenic mice. Journal of Leukocyte Biology, 2010, 87, 815-822.	3.3	24
282	Design and development of exome capture sequencing for the domestic pig (Sus scrofa). BMC Genomics, 2014, 15, 550.	2.8	24
283	A Mini-Atlas of Gene Expression for the Domestic Goat (Capra hircus). Frontiers in Genetics, 2019, 10, 1080.	2.3	24
284	The Function of the Conserved Regulatory Element within the Second Intron of the Mammalian Csf1r Locus. PLoS ONE, 2013, 8, e54935.	2.5	24
285	Construction of representative transcript and protein sets of human, mouse, and rat as a platform for their transcriptome and proteome analysis. Genomics, 2004, 84, 913-921.	2.9	23
286	Transcriptional Regulatory Networks in Macrophages. Novartis Foundation Symposium, 2007, 281, 2-24.	1.1	23
287	The Ewing Sarcoma Protein (EWS) Binds Directly to the Proximal Elements of the Macrophage-Specific Promoter of the CSF-1 Receptor (csf1r) Gene. Journal of Immunology, 2008, 180, 6733-6742.	0.8	23
288	Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells. Journal of Leukocyte Biology, 2015, 97, 985-995.	3.3	23

#	Article	IF	CITATIONS
289	An automatable screen for the rapid identification of proteins amenable to refolding. Proteomics, 2006, 6, 1750-1757.	2.2	22
290	Identification and annotation of conserved promoters and macrophage-expressed genes in the pig genome. BMC Genomics, 2015, 16, 970.	2.8	22
291	On the stimulation of rat thymocyte 3-0-methyl-glucose transport by mitogenic stimuli. Journal of Cellular Physiology, 1978, 96, 303-308.	4.1	21
292	Mechanisms of regulation of the MacMARCKS gene in macrophages by bacterial lipopolysaccharide. Journal of Leukocyte Biology, 1999, 66, 528-534.	3.3	21
293	Increased TNF expression in CD43++ murine blood monocytes. Immunology Letters, 2008, 118, 142-147.	2.5	21
294	A <i>Csf1r</i> -EGFP Transgene Provides a Novel Marker for Monocyte Subsets in Sheep. Journal of Immunology, 2016, 197, 2297-2305.	0.8	21
295	A binge high sucrose diet provokes systemic and cerebral inflammation in rats without inducing obesity. Scientific Reports, 2021, 11, 11252.	3.3	21
296	RNA synthesis inhibition stabilises urokinase mRNA in macrophages. FEBS Letters, 1994, 356, 311-313.	2.8	20
297	Is the Osteopetrotic (<i>op/op</i> Mutant) Mouse Completely Deficient in Expression of Macrophage Colony-Stimulating Factor?. Journal of Interferon and Cytokine Research, 1995, 15, 279-284.	1.2	20
298	Experimental and bioinformatic characterisation of the promoter region of the Marfan syndrome gene, FBN1. Genomics, 2009, 94, 233-240.	2.9	20
299	Whole-Genome Sequence Data Suggest Environmental Adaptation of Ethiopian Sheep Populations. Genome Biology and Evolution, 2021, 13, .	2.5	20
300	Modelling the structure of latexin–carboxypeptidase A complex based on chemical cross-linking and molecular docking. Protein Engineering, Design and Selection, 2006, 19, 9-16.	2.1	19
301	Beta-arrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival. Molecular Immunology, 2009, 47, 340-347.	2.2	19
302	Functional evolution of the colony-stimulating factor 1 receptor (CSF1R) and its ligands in birds. Journal of Leukocyte Biology, 2020, 107, 237-250.	3.3	19
303	The microphthalmia transcription factor (MITF) contains two N-terminal domains required for transactivation of osteoclast target promoters and rescue of mi mutant osteoclasts. Journal of Leukocyte Biology, 2002, 71, 295-303.	3.3	19
304	Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface receptor. Biochemical Journal, 2000, 347, 313-320.	3.7	18
305	Analysis of the Progeny of Sibling Matings Reveals Regulatory Variation Impacting the Transcriptome of Immune Cells in Commercial Chickens. Frontiers in Genetics, 2019, 10, 1032.	2.3	18
306	Protein Structure Determination Using a Combination of Cross-linking, Mass Spectrometry, and Molecular Modeling. Methods in Molecular Biology, 2008, 426, 459-474.	0.9	18

#	Article	IF	CITATIONS
307	Localization and Function of Tissue Macrophages. Novartis Foundation Symposium, 1986, 118, 54-67.	1.1	17
308	Macrophages.com: An on-line community resource for innate immunity research. Immunobiology, 2011, 216, 1203-1211.	1.9	17
309	Cloning and expression of feline colony stimulating factor receptor (CSF-1R) and analysis of the species specificity of stimulation by colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). Cytokine, 2013, 61, 630-638.	3.2	17
310	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Computational Biology, 2018, 14, e1005934.	3.2	17
311	Preparation and Characterization of Human Bone Marrow-Derived Macrophages. Journal of Leukocyte Biology, 1985, 38, 541-552.	3.3	16
312	The effects of interleukin 3 (IL-3) on cells responsive to macrophage colony-stimulating factor (CSF-1) in liquid murine bone marrow culture. British Journal of Haematology, 1990, 74, 138-145.	2.5	16
313	The resistance of macrophage-like tumour cell lines to growth inhibition by lipopolysaccharide and pertussis toxin. British Journal of Haematology, 1993, 84, 392-401.	2.5	16
314	Incorporating a TEV cleavage site reduces the solubility of nine recombinant mouse proteins. Protein Expression and Purification, 2006, 50, 68-73.	1.3	16
315	Bring out your dead. Nature Immunology, 2008, 9, 12-14.	14.5	16
316	Functional annotation of the T ell immunoglobulin mucin family in birds. Immunology, 2016, 148, 287-303.	4.4	16
317	Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D 2 synthase. European Journal of Medicinal Chemistry, 2010, 45, 447-454.	5.5	15
318	The immunostimulatory activity of phosphorothioate CpG oligonucleotides is affected by distal sequence changes. Molecular Immunology, 2011, 48, 1027-1034.	2.2	15
319	Induction of interferon and cell death in response to cytosolic DNA in chicken macrophages. Developmental and Comparative Immunology, 2016, 59, 145-152.	2.3	15
320	Antigen Sampling CSF1R-Expressing Epithelial Cells Are the Functional Equivalents of Mammalian M Cells in the Avian Follicle-Associated Epithelium. Frontiers in Immunology, 2019, 10, 2495.	4.8	15
321	Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. Journal of Hematology and Oncology, 2021, 14, 3.	17.0	15
322	The Mononuclear Phagocyte System of the Rat. Journal of Immunology, 2021, 206, 2251-2263.	0.8	15
323	Prediction of Altered 3′- UTR miRNA-Binding Sites from RNA-Seq Data: The Swine Leukocyte Antigen Complex (SLA) as a Model Region. PLoS ONE, 2012, 7, e48607.	2.5	15
324	Insulin-like Growth Factor-I (IGF-I) and IGF-I Receptor (IGF-IR) Immunoreactivity in Normal and Osteopetrotic (toothless, <i>tl/tl</i>) Rat Tibia. Growth Factors, 1999, 16, 279-291.	1.7	14

#	Article	IF	CITATIONS
325	Transcriptional Regulation of c-fms Gene Expression. Cell Biochemistry and Biophysics, 2001, 34, 001-016.	1.8	14
326	Focusing in on structural genomics: The University of Queensland structural biology pipeline. New Biotechnology, 2006, 23, 281-289.	2.7	14
327	Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences. Journal of Virology, 2020, 94, .	3.4	14
328	On the utility of CSF1R inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
329	Contamination of isolated mouse Kupffer cells with liver sinusoidal endothelial cells. Immunity, 2022, 55, 1139-1140.	14.3	14
330	Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?. BMC Research Notes, 2008, 1, 78.	1.4	13
331	Macrophages from BALB/c and CBA/Ca mice differ in their cellular responses to <i>Streptococcus pneumoniae</i> . Journal of Leukocyte Biology, 2009, 87, 735-741.	3.3	13
332	Genetic and genomic analyses underpin the feasibility of concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep. PLoS ONE, 2019, 14, e0214346.	2.5	12
333	Transcriptomic Analysis of Rat Macrophages. Frontiers in Immunology, 2020, 11, 594594.	4.8	12
334	A Guide to the Mammalian Genome. Genome Research, 2003, 13, 1267-1272.	5.5	11
335	CD148/DEP-1 association with areas of cytoskeletal organisation in macrophages. Experimental Cell Research, 2009, 315, 1734-1744.	2.6	11
336	TLR9â€independent effects of inhibitory oligonucleotides on macrophage responses to <i>S. typhimurium</i> . Immunology and Cell Biology, 2009, 87, 218-225.	2.3	11
337	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	12.8	11
338	Treatment with a long-acting chimeric CSF1 molecule enhances fracture healing of healthy and osteoporotic bones. Biomaterials, 2021, 275, 120936.	11.4	11
339	Bacterial lipopolysaccharide confers resistance to G418, doxorubicin, and taxol in the murine macrophage cell line, RAW264. Journal of Leukocyte Biology, 1996, 59, 280-286.	3.3	10
340	Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14010.	4.1	10
341	The evolution of the macrophage-specific enhancer (Fms intronic regulatory element) within the CSF1R locus of vertebrates. Scientific Reports, 2017, 7, 17115.	3.3	10
342	The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Veterinary Journal, 2021, 53, 231-249.	1.7	10

#	Article	lF	CITATIONS
343	Quantitative trait loci and transcriptome signatures associated with avian heritable resistance to Campylobacter. Scientific Reports, 2021, 11, 1623.	3.3	10
344	Expression of Calcification and Extracellular Matrix Genes in the Cardiovascular System of the Healthy Domestic Sheep (Ovis aries). Frontiers in Genetics, 2020, 11, 919.	2.3	9
345	ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages ofmotheaten-viable Mutant Mice. Molecular and Cellular Biology, 2000, 20, 8026-8034.	2.3	9
346	Development of novel reagents to chicken FLT3, XCR1 and CSF2R for the identification and characterization of avian conventional dendritic cells. Immunology, 2022, 165, 171-194.	4.4	9
347	A kinase-dead <i>Csf1r</i> mutation associated with adult-onset leukoencephalopathy has a dominant inhibitory impact on CSF1R signalling. Development (Cambridge), 2022, 149, .	2.5	9
348	Immunohistochemical Analysis of the Involvement of F4/80 and Ia-Positive Macrophages in Mouse Liver Infected With Lymphocytic Choriomeningitis Virus. Journal of Leukocyte Biology, 1986, 40, 617-628.	3.3	8
349	Modification of recombinatorial cloning for small affinity tag fusion protein construct generation. Analytical Biochemistry, 2005, 346, 327-329.	2.4	8
350	Pilot studies on the parallel production of soluble mouse proteins in a bacterial expression system. Journal of Structural and Functional Genomics, 2005, 6, 13-20.	1.2	7
351	Effects of CSF-1 on Cholesterol Accumulation and Efflux by Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 18-25.	2.4	7
352	Therapeutic potential of macrophage colony-stimulating factor in chronic liver disease. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	7
353	Antigenic Variation and Macrophage Infiltration of Human Bladder Tumors Xenografted Into Nude Mice. Journal of Leukocyte Biology, 1988, 43, 335-342.	3.3	6
354	Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 133-135.	0.7	6
355	Crystallization and preliminary X-ray diffraction studies of mammalian purple acid phosphatase. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1462-1464.	2.5	5
356	Neutrophilic schizophrenia: Breaching the barrier between innate and adaptive immunity. Immunology and Cell Biology, 2007, 85, 265-266.	2.3	5
357	A Medium or High Throughput Protein Refolding Assay. Methods in Molecular Biology, 2008, 426, 269-275.	0.9	5
358	Measurement of serum Interleukin 34 (ILâ€34) and correlation with severity and pruritus scores in clientâ€owned dogs with atopic dermatitis. Veterinary Dermatology, 2020, 31, 359.	1.2	5
359	Transcriptional Control of the Expression of the c-fms Gene Encoding the Receptor for Macrophage Colony-Stimulating Factor (CSF-1). Immunobiology, 1996, 195, 461-476.	1.9	4
360	Our evolving knowledge of the transcriptional landscape. Mammalian Genome, 2008, 19, 663-666.	2.2	4

#	Article	IF	Citations
361	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 141, 369.	28.9	4
362	The Biology of Macrophages. , 2014, , 71-93.		4
363	Immunohistochemical study of morphology and distribution of CD163+ve macrophages in the normal adult equine gastrointestinal tract. Veterinary Immunology and Immunopathology, 2020, 226, 110073.	1.2	4
364	Generation and network analysis of an RNA-seq transcriptional atlas for the rat. NAR Genomics and Bioinformatics, 2022, 4, Iqac017.	3.2	4
365	Rapid alterations in cellular morphology and plasma membrane structure induced in rat thymocytes by mitogenic stimuli. Journal of Cellular Physiology, 1979, 101, 523-528.	4.1	3
366	Regulation of the production of granulocyte-macrophage colony-stimulating factor by macrophage-like tumour cell lines. FEBS Letters, 1985, 180, 271-274.	2.8	3
367	Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface receptor. Biochemical Journal, 2000, 347, 313.	3.7	3
368	The Effect of Race Training on the Basal Gene Expression of Alveolar Macrophages Derived From Standardbred Racehorses. Journal of Equine Veterinary Science, 2019, 75, 48-54.	0.9	3
369	Measurement of serum macrophage migration inhibitory factor (MIF) and correlation with severity and pruritus scores in client owned dogs with atopic dermatitis. Veterinary Dermatology, 2019, 30, 115.	1.2	3
370	Effect of Acute and Chronic Administration of Ethanol on c-fos Expression in Brain. , 1993, , 305-316.		3
371	The HIV-1 regulatory protein Nef has a specific function in viral expression in a murine macrophage cell line. Journal of Leukocyte Biology, 1994, 56, 294-303.	3.3	2
372	Comment on "CCR7 Is Critically Important for Migration of Dendritic Cells in Intestinal Lamina Propria to Mesenteric Lymph Nodes― Journal of Immunology, 2006, 177, 2035-2035.	0.8	2
373	â€~Recognised veterinary practice' in the context of clinical field trials. Veterinary Record, 2015, 176, 552-552.	0.3	2
374	Examining the Impact of Imputation Errors on Fine-Mapping Using DNA Methylation QTL as a Model Trait. Genetics, 2019, 212, 577-586.	2.9	2
375	Use of quantitative realâ€ŧime PCR to determine the local inflammatory response in the intestinal mucosa and <i>muscularis</i> of horses undergoing small intestinal resection. Equine Veterinary Journal, 2022, 54, 52-62.	1.7	2
376	CRISPR-Cas9 Editing of Human Histone Deubiquitinase Gene USP16 in Human Monocytic Leukemia Cell Line THP-1. Frontiers in Cell and Developmental Biology, 2021, 9, 679544.	3.7	2
377	Young Scientists in Biomedical Research. Science, 1999, 284, 49c-49.	12.6	2
378	Editorial. Immunobiology, 2011, 216, 1163.	1.9	1

#	Article	IF	CITATIONS
379	Transcriptional Regulation and Macrophage Differentiation. , 2017, , 117-139.		1
380	The preterm labor associated ADAMTS2 gene isÂinduced by glucocorticoids. American Journal of Obstetrics and Gynecology, 2018, 219, 122-123.	1.3	1
381	Overview of the Pipeline for Structural and Functional Characterization of Macrophage Proteins at the University of Queensland. Methods in Molecular Biology, 2008, 426, 577-587.	0.9	1
382	Hormonal regulation of gluconeogenesis in isolated rat hepatocytes: An undergraduate experiment. Biochemical Education, 1976, 4, 13-14.	0.1	0
383	Pattern Matching for Motifs. , 2005, , 299-312.		0
384	Noncoding RNAs in mammals. , 2005, , .		0
384 385	Noncoding RNAs in mammals. , 2005, , . ExpresiÃ ³ n especÃfica de los genes de la respuesta inflamatoria en subpoblaciones de macrÃ ³ fagos Biomedica, 2005, 25, 261.	0.7	0 0
	ExpresiÃ ³ n especÃfica de los genes de la respuesta inflamatoria en subpoblaciones de macrÃ ³ fagos	0.7	
385	ExpresiÃ ³ n especÃfica de los genes de la respuesta inflamatoria en subpoblaciones de macrÃ ³ fagos Biomedica, 2005, 25, 261. Re: Structural and cellular differences between metaphyseal and diaphyseal periosteum in		0
385 386	ExpresiÃ ³ n especÃfica de los genes de la respuesta inflamatoria en subpoblaciones de macrÃ ³ fagos Biomedica, 2005, 25, 261. Re: Structural and cellular differences between metaphyseal and diaphyseal periosteum in different-aged rats. Bone, 2008, 42, 825-826.		0 0